The largest database of trusted experimental protocols

Epitect plus dna bisulfite conversion kit

Manufactured by Qiagen
Sourced in Germany

The Epitect Plus DNA Bisulfite Conversion Kit is a laboratory product designed for the conversion of DNA samples to prepare them for bisulfite sequencing. The kit facilitates the conversion of unmethylated cytosine residues to uracil, while leaving methylated cytosines unchanged. This process is a crucial step in the analysis of DNA methylation patterns.

Automatically generated - may contain errors

3 protocols using epitect plus dna bisulfite conversion kit

1

Whole Genome Bisulfite Sequencing

Check if the same lab product or an alternative is used in the 5 most similar protocols
For somatic tissue, rosette leaves were pooled from 10 plants for each treatment group. For male gamete analysis, sperm and vegetative nuclei were collected from 100 plants for each treatment group. gDNA was extracted from leaf samples with the DNAeasy Plant Mini Kit (Qiagen), and from sperm and vegetative nuclei with MasterPureDNA Purification Kit (Epicentre). DNA libraries were generated using the Illumina TruSeq Nano kit (Illumina, CA, USA). DNA was sheared to 350 bp. The bisulfite treatment step using the Epitect Plus DNA Bisulfite Conversion Kit (Qiagen, Hilden, Germany) was inserted after the adaptor ligation; incubation in the thermal cycler was repeated once before clean-up. After clean-up of the bisulfite conversion reaction, library enrichment was done using Kapa Hifi Uracil+ DNA polymerase (Kapa Biosystems, MA, USA). Libraries were sequenced with 2 x 101 bp paired-end reads on an Illumina HiSeq 2000 instrument, with conventional gDNA libraries in control lanes for base calling calibration. Seven to eight libraries with different indexing adapters were pooled in one lane. For image analysis we used Illumina RTA 1.13.48.
+ Open protocol
+ Expand
2

Genome-wide DNA methylation analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Genomic DNA was extracted from leaves of hybrid and parent seedlings with the DNAeasy Plant Mini Kit (Qiagen). DNA was sheared to 350 bp with a Covaris™ S220 sonicator. DNA end repair, A-tailing, and adaptor ligation were performed with a TruSeq Nano Kit (Illumina) according to the manufacturer’s instructions. After adaptor ligation, the bisulfite treatment was done with an Epitect Plus DNA Bisulfite Conversion Kit (Qiagen). PCR amplification of library molecules was done using KAPA Hifi Uracil + DNA Polymerase (Kapa Biosystems). Libraries were sequenced on an Illumina HiSeq 3000 instrument with 2 × 150 bp reads.
All paired-end reads were aligned to the synthetic hybrid reference genome using Bismark (v0.15.0) [107 (link)] with Bowtie 2 aligner (v2.2.4) [108 (link)] with default parameter settings. PCR duplicates were removed after mapping. The unmethylated and methylated cytosine residue(s) in every read were identified in all sequence contexts (CG, CHG, and CHH) by the “bismark_methylation_extractor” script in Bismark. The methylation ratio of a given genomic region was calculated as the ratio between the total number of identified 5-methylcytosines and the total number of sequenced cytosines.
+ Open protocol
+ Expand
3

Plant DNA Methylome Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Rosette leaves from five 4 week old plants were pooled for each sample. Genomic DNA was extracted with the DNeasy Plant Mini Kit (Qiagen, Germany). DNA libraries were generated using the Illumina TruSeq Nano kit (Illumina, CA, USA). DNA was sheared to 350 bp. The bisulfite treatment step using the Epitect Plus DNA Bisulfite Conversion Kit (Qiagen, Germany) was inserted after the adaptor ligation; incubation in the thermal cycler was repeated once before clean-up. After clean-up of the bisulfite conversion reaction, library enrichment was done using Kapa Hifi Uracil+ DNA polymerase (Kapa Biosystems, USA). Libraries were sequenced with 2 × 150 bp paired-end reads on an HiSeq 4000 (Illumina), with conventional gDNA libraries in control lanes for base calling calibration. Sixteen to 24 libraries with different indexing adapters were pooled in each lane.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!