The largest database of trusted experimental protocols

Tma 8310

Manufactured by Rigaku
Sourced in Japan

The TMA 8310 is a Thermomechanical Analyzer (TMA) designed for the measurement of thermal expansion and other thermomechanical properties of materials. It is capable of detecting dimensional changes in samples as they are subjected to controlled temperature programs.

Automatically generated - may contain errors

2 protocols using tma 8310

1

Thermal, Structural, and Optical Analysis of Phosphate Glasses

Check if the same lab product or an alternative is used in the 5 most similar protocols
The Tg was determined from thermomechanical analysis (TMA) at a heating rate of 10 °C min−1 and under a 1.0 g loading using a TMA 8310 (Rigaku, Japan). The linear thermal expansion coefficient of the samples, measuring around 4 mm × 4 mm × 15 mm, was also evaluated using the same equipment at a temperature range of 200–350 °C. Moreover, the local coordination state of phosphorus was determined by measuring the 31P MAS NMR spectra using a CMX-400 NMR spectrometer (JEOL, Japan). A frequency, spin rate and pulse delay of 161.80 MHz, 10 kHz and 5 s, respectively, were used in the measurements. The chemical shifts were estimated with respect to H3PO4 in a D2O solution (0 p.p.m.) and the conventional notation for phosphorus sites, Qn, was used for the analysis. The n value denotes the number of bridging oxygens per PO4 tetrahedron. Furthermore, the densities were measured by applying the Archimedes method using water at room temperature. We measured the refractive index of the samples using a prism coupler with a 473, 633, 1,319 and 1,553 nm light source (Metericon, NJ, USA); the error in the measurement was 10−4.
+ Open protocol
+ Expand
2

Thermal Expansion and Electrical Properties

Check if the same lab product or an alternative is used in the 5 most similar protocols
Linear thermal expansion ΔL(T)/L along with the horizontal direction was measured using a laser-interference dilatometer (LIX-2; Ulvac) with a warming process. ΔL(T)/L along with the vertical and the horizontal directions on both warming and cooling processes were measured using a thermomechanical analyzer (TMA8310; Rigaku). For sintered polycrystalline samples, ΔL/L is related directly to the volume (V) expansion in a manner of ΔL/L=(1/3)ΔV/V. Temperature-dependent resistivity ρ(T) was measured using a conventional four-probe method (PPMS: Quantum Design). Temperature-dependent magnetization M(T) was measured at 1T using a superconducting quantum interference device magnetometer (MPMS; Quantum Design).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!