Vertrel xf
Vertrel® XF is a specialty solvent developed by DuPont. It is a non-flammable, low-toxicity fluorinated compound designed for use in various industrial applications. The product's core function is to provide a cleaning and degreasing solution for precision cleaning and other industrial processes.
Lab products found in correlation
14 protocols using vertrel xf
Evaluating HOCl Efficacy Against MS2 Virus
Lubricant Coating Optimization for Magnetic Disks
Example 3
Compound 4 and a mixture of Compound 1 and Compound 4 (15 wt %: 85 wt %) were each dissolved in Vertrel-XF, produced by DuPont. The concentration of the lubricant in each solution was 0.05 wt %. Magnetic disks having a diameter of 2.5 inches were individually dipped in each solution for 1 minute, and lifted out at 2 mm/s. Subsequently, a magnetic head was mounted, and the prepared magnetic disks were each rotated at a high speed of 5400 rpm. Thereafter, the amount of the lubricant adhering to the magnetic head was measured.
These results confirmed that the lubricant comprising a fluoropolyether-based lubricant and the compound of the present invention having an alkoxy group at one terminal and a hydroxyl group at the other terminal could reduce the pickup.
Bacteriophage Propagation and Purification
Formulation of Hydrophobic Insulating Liquids
Example 2
The following example provides a method for preparing a mixture of hydrophobic liquids that have electrical insulation capabilities by mixing two or more hydrophobic liquids in a solvent using one of many known agitation techniques.
A mixture containing 10% by weight phenylated siloxane, 20% by weight fluoroalkane, and 70% by weight of a hydro-fluorocarbon (sold under the name DuPont™ Vertrel® XF, which is HFC 43-10mee or 2,3-dihydrodecafluoropentane; empirical formula C5H2F10) were mixed together at 25° C. using an impeller mixer at 2000 rpm for 30 minutes, or until all three components formed a homogenous mixture.
Murine L929 Cell Culture and Reovirus Propagation
Preparation of Hydrophobic Insulation Liquid
Example 2
The following example provides a method for preparing a mixture of hydrophobic liquids that have electrical insulation capabilities by mixing two or more hydrophobic liquids in a solvent using one of many known agitation techniques.
A mixture containing 10% by weight phenylated siloxane, 20% by weight fluoroalkane, and 70% by weight of a hydro-fluorocarbon (sold under the name DuPont™ Vertrel® XF, which is HFC 43-10 mee or 2,3-dihydrodecafluoropentane; empirical formula C5H2F10) were mixed together at 25° C. using an impeller mixer at 2000 rpm for 30 minutes, or until all three components formed a homogenous mixture.
Hydrophobic Liquid-Solid Particle Mixture
Example 3
The following example provides a method for preparing a mixture of hydrophobic liquids with solid particles that both have electrical insulation capabilities by mixing a two or more hydrophobic liquids with two or more hydrophobic particles using one of many known agitation techniques.
A mixture containing 10% by weight phenylated siloxane, 20% by weight fluoroalkane, 5% by weight precipitated hydrophobically treated silica, and 65% by weight of a hydro-fluorocarbon (sold under the name DuPont™ Vertrel® XF) were mixed together using a rotor-stator homogenizer.
The phenylated siloxane, the fluoroalkane, and the hydro-fluorocarbon solvent were first mixed together at 25° C. using a roto-stator mixer at 10,000 rpm for 5 minutes until a homogenous solution was obtained.
The solid hydrophobically treated precipitated silica was then introduced in increment. The rotor-stator was run at 10,000 rpm every time the silica was introduced. The process was repeated until a homogenous dispersion was obtained.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with the true scope of the invention being indicated by the following claims.
Preparation of Hydrophobic Insulating Mixture
Example 2
The following example provides a method for preparing a mixture of hydrophobic liquids that have electrical insulation capabilities by mixing two or more hydrophobic liquids in a solvent using one of many known agitation techniques.
A mixture containing 10% by weight phenylated siloxane, 20% by weight fluoroalkane, and 70% by weight of a hydro-fluorocarbon (sold under the name DuPont™ Vertrel® XF, which is HFC 43-10mee or 2,3-dihydrodecafluoropentane; empirical formula C5H2F10) were mixed together at 25° C. using an impeller mixer at 2000 rpm for 30 minutes, or until all three components formed a homogenous mixture.
Reovirus Strain Purification and Quantification
Preparation of Hydrophobic Liquid-Solid Insulator Mixture
Example 3
The following example provides a method for preparing a mixture of hydrophobic liquids with solid particles that both have electrical insulation capabilities by mixing a two or more hydrophobic liquids with two or more hydrophobic particles using one of many known agitation techniques.
A mixture containing 10% by weight phenylated siloxane, 20% by weight fluoroalkane, 5% by weight precipitated hydrophobically treated silica, and 65% by weight of a hydro-fluorocarbon (sold under the name DuPont™ Vertrel® XF) were mixed together using a rotor-stator homogenizer.
The phenylated siloxane, the fluoroalkane, and the hydro-fluorocarbon solvent were first mixed together at 25° C. using a roto-stator mixer at 10,000 rpm for 5 minutes until a homogenous solution was obtained.
The solid hydrophobically treated precipitated silica was then introduced in increment. The rotor-stator was run at 10,000 rpm every time the silica was introduced. The process was repeated until a homogenous dispersion was obtained.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with the true scope of the invention being indicated by the following claims.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!