Lncap
LNCaP is a cell line derived from a human prostate cancer sample. It is commonly used in cancer research and drug development. The core function of LNCaP is to serve as an in vitro model for studying prostate cancer biology and evaluating potential therapeutic agents.
Lab products found in correlation
71 protocols using lncap
Prostate Cancer Cell Line Culture Protocols
Transwell Co-culture of PPAT Explants and PCa Cells
Profiling Prostate Cancer Cell Lines
Prostate Cancer Cell Line Characterization
Lentiviral Knockdown of Cx43 in Prostate Cancer
Cell Line Sourcing and Maintenance
Developing Novel Proteasome Inhibitors for Cancer Treatment
Example 8
New proteasome inhibitors may be developed not only for treating conditions mediated by senescent cells, but also conditions mediated by cancer cells.
The ability of compounds to specifically kill cancer cells can be tested in assays using other established cell lines. These include HeLa cells, OVCAR-3, LNCaP, and any of the Authenticated Cancer Cell Lines available from Millipore Sigma, Burlington Mass., U.S.A. Compounds specifically kill cancer cells if they are lethal to the cells at a concentration that is at least 5-fold lower, and preferably 25- or 100-fold lower than a non-cancerous cell of the same tissue type. The control cell has morphologic features and cell surface markers similar to the cancer cell line being tested, but without signs of cancer.
In vivo, compounds are evaluated in flank xenograft models established from sensitive SCLC (H889) and hematologic (RS4; 11) cell lines, or using other tumor-forming cancer cell lines, according to what type of cancer is of particular interest to the user. When dosed orally or intravenously, compounds induce rapid and complete tumor responses (CR) that are durable for several weeks after the end of treatment in all animals bearing H889 (SCLC) or RS4; 11 (ALL) tumors. Similar treatment of mice bearing H146 SCLC tumors can induce rapid regressions in the animals.
Evaluating Novel Proteasome Inhibitors for Cancer Treatment
Example 8
New proteasome inhibitors may be developed not only for treating conditions mediated by senescent cells, but also conditions mediated by cancer cells.
The ability of compounds to specifically kill cancer cells can be tested in assays using other established cell lines. These include HeLa cells, OVCAR-3, LNCaP, and any of the Authenticated Cancer Cell Lines available from Millipore Sigma, Burlington Mass., U.S.A. Compounds specifically kill cancer cells if they are lethal to the cells at a concentration that is at least 5-fold lower, and preferably 25- or 100-fold lower than a non-cancerous cell of the same tissue type. The control cell has morphologic features and cell surface markers similar to the cancer cell line being tested, but without signs of cancer.
In vivo, compounds are evaluated in flank xenograft models established from sensitive SCLC (H889) and hematologic (RS4;11) cell lines, or using other tumor-forming cancer cell lines, according to what type of cancer is of particular interest to the user. When dosed orally or intravenously, compounds induce rapid and complete tumor responses (CR) that are durable for several weeks after the end of treatment in all animals bearing H889 (SCLC) or RS4;11 (ALL) tumors. Similar treatment of mice bearing H146 SCLC tumors can induce rapid regressions in the animals.
Cell Line Culturing Techniques
TMEFF2 Knockdown in LNCaP and 22Rv1 Cells
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!