The largest database of trusted experimental protocols

Ff01 446 510 581 703 25

Manufactured by IDEX Corporation

The FF01-446/510/581/703-25 is a multipurpose lab equipment product from IDEX Corporation. It is designed to serve as a filter, capable of filtering a range of wavelengths from 446 to 703 nanometers. The product specifications and technical details are available upon request.

Automatically generated - may contain errors

3 protocols using ff01 446 510 581 703 25

1

Live-cell Oblique Illumination Microscopy

Check if the same lab product or an alternative is used in the 5 most similar protocols
For live-cell oblique illumination, neurons were visualized at 50-Hz (10,000–20,000 frames by image streaming) and 20-ms exposure, at 37°C on a microscope equipped with an ILas2 double-laser illuminator (Roper Technologies), a CFI Apo TIRF 100× 1.49 NA objective (Nikon), and an Evolve512 delta EMCCD camera (Photometrics). Image acquisition was performed using Metamorph software (MetaMorph Microscopy Automation and Image Analysis Software, version 7.7.8; Molecular Devices). A quadruple beam splitter (LF 405/488/561/635-A-000-ZHE; Semrock) and a QUAD band emitter (FF01-446/510/581/703-25; Semrock) were used.
+ Open protocol
+ Expand
2

Syntaxin-1A Dynamics by uPAINT

Check if the same lab product or an alternative is used in the 5 most similar protocols
uPAINT experiments were performed as per Giannone et al. (2010) (link). To track syntaxin-1A-GFP, we used a GFP nanobody (Kubala et al., 2010 (link)) conjugated to ATTO 647N-NHS-ester (Atto-Tec). DKD-PC12 cells were transfected with syntaxin-1A-GFP alone or cotransfected with either Munc18-1-mCherry or Munc18-1Δ317-333-mCherry. ATTO 647N–coupled anti-GFP nanobodies were added at a low concentration for stochastic labeling. Time-lapse TIRF videos were captured at 50 Hz (16,000 frames by image streaming) at 37°C. Separate cells were imaged in control conditions or stimulated (imaging was initiated upon addition of 2 mM BaCl2). We used a quadruple beam splitter (LF 405/488/561/635-A-000-ZHE; Semrock) and a quad band emitter (FF01-446/510/581/703-25; Semrock). The power of the 635-nm laser used was 75–80% of initial laser power (200 mW).
+ Open protocol
+ Expand
3

STORM Imaging of Synaptic GABAARs

Check if the same lab product or an alternative is used in the 5 most similar protocols
All experiments were performed on an Elyra PS1 STORM/SIM microscope (Carl Zeiss Microscopy GmbH) equipped with a 100× objective (α Plan-Apochromat 100× 1.46 NA oil-immersion), a focus lock system and an EMCCD camera Andor iXon Ultra 897 (Andor Technologies). A LF488/561-A-000 beam splitter and a FF01–523/610–25 emission filter (Semrock) were used to record SEpH and mEos2 fluorescence. Antibodies against GFP labeled with Alexa 647 and anti-synaptotagmin antibodies labeled with Oyster 550 or Oyster 650 (Synaptic Systems) were detected using LF 405/488/561/635-A-000-ZHE and FF01-446/510/581/703-25 (Semrock). In dual color experiments, red and green channels were aligned with fluorescent microspheres (Molecular Probes) and the channel alignment module in Zen 2012 SP2 (black) software (Carl Zeiss Microscopy GmbH). We collected movies of labeled synaptotagmin sites in live neurons and only bright immobile fluorescent puncta were used to determine presynaptic terminals. Synaptic GABAARs were then identified from the overlap of synaptotagmin-rich presynaptic terminals with GFP-labeled γ subunit clusters. Cells were imaged in total internal reflection (TIRF) or highly inclined illumination mode in an enclosed chamber at RT, (32.0 ± 1.5)°C or (36.0 ± 1.5)°C.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!