1H, 13C, 1H–1H gs-COSY, 1H–13C gs-HMQC and 1H–13C gs-HMBC spectra were acquired at 298 K on a JEOL JNM-ECA 600II device at 600.00 MHz (1H) and 150.86 MHz (13C); gs = gradient selected, COSY = correlation spectroscopy, HMQC = heteronuclear multiple quantum coherence, HMBC = heteronuclear multiple bond coherence). The splitting of proton resonances in the reported 1H spectra is defined as s = singlet, d = doublet, dd = doublet of doublets, t = triplet, sep = septet. Spectra were calibrated using protio impurity signals of used solvent—for CDCl3: 7.26 ppm (1H NMR) and 77.16 ppm (13C NMR); for MeOD-d4: 3.31 ppm (1H NMR); for DMF-d7: 8.03, 2.92 and 2.75 ppm (1H NMR); for 10% DMF-d7/D2O and 10% MeOD-d4/D2O: 4.79 ppm (for D2O in 1H NMR). Electrospray ionization (ESI) mass spectra of the methanol solution were obtained of on a LCQ Fleet Ion Trap mass spectrometer (Thermo Scientific; Qual Browser software, version 2.0.7) in the positive ionization mode (ESI+). Elemental analysis (C, H, N) was performed using a Flash 2000 CHNS Elemental Analyzer (Thermo Scientific). FTIR spectra were obtained on a Nexus 670 FT-IR (Thermo Nicolet) on an ATR diamond plate between 400 and 4000 cm–1.
Jnm eca 600ii device
The JNM-ECA 600II is a high-performance nuclear magnetic resonance (NMR) spectrometer developed by JEOL. It is designed to perform advanced analytical techniques in various scientific and research applications. The core function of the JNM-ECA 600II is to provide accurate and precise measurements of nuclear magnetic resonances in samples, enabling the analysis of molecular structures and dynamics.
Lab products found in correlation
4 protocols using jnm eca 600ii device
NMR, Mass Spectrometry, and Elemental Analysis
1H, 13C, 1H–1H gs-COSY, 1H–13C gs-HMQC and 1H–13C gs-HMBC spectra were acquired at 298 K on a JEOL JNM-ECA 600II device at 600.00 MHz (1H) and 150.86 MHz (13C); gs = gradient selected, COSY = correlation spectroscopy, HMQC = heteronuclear multiple quantum coherence, HMBC = heteronuclear multiple bond coherence). The splitting of proton resonances in the reported 1H spectra is defined as s = singlet, d = doublet, dd = doublet of doublets, t = triplet, sep = septet. Spectra were calibrated using protio impurity signals of used solvent—for CDCl3: 7.26 ppm (1H NMR) and 77.16 ppm (13C NMR); for MeOD-d4: 3.31 ppm (1H NMR); for DMF-d7: 8.03, 2.92 and 2.75 ppm (1H NMR); for 10% DMF-d7/D2O and 10% MeOD-d4/D2O: 4.79 ppm (for D2O in 1H NMR). Electrospray ionization (ESI) mass spectra of the methanol solution were obtained of on a LCQ Fleet Ion Trap mass spectrometer (Thermo Scientific; Qual Browser software, version 2.0.7) in the positive ionization mode (ESI+). Elemental analysis (C, H, N) was performed using a Flash 2000 CHNS Elemental Analyzer (Thermo Scientific). FTIR spectra were obtained on a Nexus 670 FT-IR (Thermo Nicolet) on an ATR diamond plate between 400 and 4000 cm–1.
Microwave-Assisted Organic Synthesis
Spectroscopic Characterization of DMF-d7
NMR Study of Metal Complex Interaction
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!