The largest database of trusted experimental protocols

Qp2020 gas chromatograph mass spectrometer

Manufactured by Shimadzu
Sourced in Japan

The QP2020 is a gas chromatograph-mass spectrometer (GC-MS) manufactured by Shimadzu. It is designed to separate, identify, and quantify a wide range of volatile and semi-volatile compounds in complex mixtures. The instrument combines gas chromatography for sample separation with mass spectrometry for compound identification and analysis.

Automatically generated - may contain errors

2 protocols using qp2020 gas chromatograph mass spectrometer

1

Terpenoid Profiling of Plant Samples

Check if the same lab product or an alternative is used in the 5 most similar protocols
The fresh leaves of each sample were hydrodistilled with a modified Clevenger-type apparatus for 2 h until the extraction was completed. The terpenoid composition analysis of each sample were performed on a SHIMADZU QP2020 gas chromatograph-mass spectrometer (SHIMADZU Corporation, Japan), fitted with a DB-5-MS silica capillary column (30 m × 0.32 mm, 0.25 μm film thickness). Helium was used as the carrier gas with a constant flowrate of 0.6 mL/min. The GC temperature program were as follows: 50 °C for 3 min, a gradient of 50–180 °C over 16.25 min followed by holding at 180 °C for 1 min, then a gradient of 180–280 °C over 10 min followed by holding at 280 °C 5 min. Alkanes were used as reference points in the calculation of relative retention indices. The GC inlet was operated at 280 °C in splitless mode with 0.6 μL injection volume. The quadrupole MS operating parameters were set as follows: electron ionization (EI) mode; EI source, 70 eV; transfer line temperature, 250 °C; ion source temperature, 200 °C; emission current, 150 μA; examination voltage, 500 V; 0.2 s for the full scan mode; scan mass range, 29–450 m/z. The peaks were identified by comparing their retention time with that of the known standards, which were determined under the same conditions. A library search was carried out using the Wiley GC-MS Library and the TBAM Library of Essential Oil Constituents.
+ Open protocol
+ Expand
2

GC/MS Analysis of Microbial Olefins and FAMEs

Check if the same lab product or an alternative is used in the 5 most similar protocols
A QP2020 gas chromatograph/mass spectrometer (Shimadzu Corp.) was used to perform the GC/MS analysis. The gas chromatograph was equipped with a split or splitless injection system and a Rxi-5 ms (30 m × 0.25 mm i.d. × 0.25 µm) capillary column, and MS was operated under ionization by electron impact at 70 eV and 200 °C. The 1-µL samples were injected in the split or splitless mode. Helium flow was maintained at 1 mL/min. The temperature of the column and duration was 40 °C for 3 min, then increased to 280 °C at 20 °C/min, and finally held for 5 min for FAMEs or 8 min for olefins. Mass spectra were recorded at m/z (mass/charge) 45–500 at a rate of 0.2/s.
The extractable olefins were quantified by directly comparing their peak areas with that of triacontane (C30 alkane, 30 carbon atoms) of known concentration, which had been added to the hexane used to extract the olefins. FAMEs were quantified by directly comparing their peak areas with that of eicosanoic acid (C20:0) of known concentration, which had been added to the sample at the beginning of the extraction procedure. For comparison of the olefin amounts produced by different Micrococcales strains, the quantitative data were normalized to a culture density of OD600 = 1.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!