The largest database of trusted experimental protocols

Vk x200 3d laser scanning microscope

Manufactured by Keyence

The VK-X200 is a 3D laser scanning microscope designed for high-precision surface analysis. It utilizes a laser to capture detailed 3D images of sample surfaces with high resolution and accuracy.

Automatically generated - may contain errors

2 protocols using vk x200 3d laser scanning microscope

1

Fabrication of Biomimetic Squid Skin Actuators

Check if the same lab product or an alternative is used in the 5 most similar protocols
SRT were extracted from the tentacles of L. vulgaris squid from Tarragona (Spain)35 (link). SRT protein was dissolved in HFIP to a concentration of 50 mg mL−1, and 1% crystal violet dye was added. 100 μL of solution were cast on polydimethylsiloxane substrates and left to evaporate for at least 3 h, yielding 20 μm protein films. The films were cut in a LPKF ProtoLaser U3 laser cutter (0.189 W, 50 kHz) to the desired motor design (characteristic lengths from 100 μm to 10 mm, Supplementary Fig. 3). Laser micromachining details are described in Supplementary Fig. 2. After machining, an array of motors were mechanically peeled off from the substrate (tweezers and needle tip) and transferred for characterization and analysis. The motors, cut from the same protein film, had homogeneous chemical composition (i.e., equal fuel storage) after the fabrication process (Supplementary Note 3). The motors were imaged in a Leica M205 FA stereomicroscope and in a Keyence VK-X200 3D laser scanning microscope.
+ Open protocol
+ Expand
2

Characterization of MPB SCBK Device

Check if the same lab product or an alternative is used in the 5 most similar protocols
Current-time characteristic measurements of MPB SCBK were performed by using a Keithley 4200A semiconductor parametric analyser (Tektronix) and a C-100 probe station from TPSi Company in the dark at room temperature. The SEM image and energy dispersive spectrometry (EDS) mapping results of the gold electrode and MPB SCBK were measured by means of a Phenom Pro-X. A three-dimensional (3D) pseudocolour plot of the gold electrode deposited on the MPB SCBK was obtained by using a KEYENCE VK-X200 3D laser scanning microscope. The absorption spectrum and transmission spectrum were recorded on an Agilent Cary 5000. The XRD measurement was performed by using a BRUKER D8 FOCUS. Raman spectra were recorded on a HORIBA Scientific Raman spectrometer with 785 nm laser excitation in air at room temperature. Steady-state PL spectra of MPB SCBK with different applied voltages were obtained by means of a HORIBA Scientific Raman spectrometer at 473 nm laser with 2.55 m W cm−2 laser intensity in air at room temperature. The PL confocal micrographs of MPB SCBK were obtained by Nikon ECLIPSE Ti with 486 nm laser excitation in air at room temperature. The J–V characteristic curves of MPB SCBK were obtained by using a Keithley 4200A semiconductor parametric analyser (Tektronix) and a C-100 probe station from TPSi Company in air at room temperature.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!