Ldh 375
The LDH 375 is a picosecond pulsed diode laser from PicoQuant. It provides pulsed laser excitation at a wavelength of 375 nm.
4 protocols using ldh 375
Steady-State and Time-Resolved Fluorescence Measurements
Steady-State and Time-Resolved Fluorescence Measurements
Fluorescence Spectroscopy of Bimane-Labeled T-Domain
The fluorescence lifetime kinetics of bimane-labeled T-domain were measured with a time-resolved fluorescence spectrometer FluoTime 200 (PicoQuant, Berlin, Germany) using a standard time-correlated single-photon counting scheme. Samples were excited at 373 nm by a sub-nanosecond pulsed diode laser LDH 375 (PicoQuant, Berlin, Germany) with a repetition rate of 10 MHz. Fluorescence emission was detected at 480 nm, selected by a Sciencetech Model 9030 monochromator, using a PMA-182 photomultiplier. The fluorescence intensity decay was analyzed using the FluoFit version 2.3 iterative-fitting software based on the Marquardt algorithm (PicoQuant, Berlin, Germany).
Absorption and Fluorescence Spectroscopy of 2-Methoxy-9-acridone Derivatives
Fluorescence decay traces were recorded on a FluoTime 200 time-resolved fluorimeter (PicoQuant, Germany), with a TimeHarp 200 event tagging card working in single-photon timing mode. The excitation source was a 375-nm pulsed diode laser (LDH-375, PicoQuant) controlled by a PDL-800 driver (PicoQuant) and working at a repetition rate of 10 MHz. The fluorescence decay traces were collected at 440, 470, 500, and 530 nm, as the emission wavelengths, until 2 × 104 counts were reached in the peak channel. For TRES acquisition, the fluorescence decay traces were obtained from 425 to 572 nm, every 3 nm. A constant period of time was employed to collect all the traces. For the cases when the laser power had to be changed for collecting a larger number of counts, the appropriate correction factors were applied to normalize the collection time.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!