Centrifuge 5415c
The Centrifuge 5415C is a compact benchtop centrifuge designed for routine applications in the laboratory. It features a fixed-angle rotor that can accommodate 18 microcentrifuge tubes with a maximum capacity of 2 mL each. The centrifuge operates at a maximum speed of 14,000 rpm, providing a relative centrifugal force (RCF) of up to 16,873 x g. The unit is equipped with an electronic control system and a time setting of up to 99 minutes.
Lab products found in correlation
25 protocols using centrifuge 5415c
Retroviral Production by Electroporation
Dynamic Light Scattering and Rheology
Example 18
Dynamic light scattering (DLS) was performed using a Malvern Nano Zetasizer ZS (Malvern Instruments Ltd Enigma Business Park, Grovewood Road, Malvern, Worcestershire, UK. WR14 1XZ) and a Haake Rheostress 1 (Thermo Fisher Scientific, Karlsruhe, Germany) equipped with a cone with 60 mm diameter/0.5° angle for buffer viscosity measurements.
All samples were centrifuged (Centrifuge 5415C, Eppendorf, Vienna, Austria) for 5 min at 10.000 rpm to determine the hydrodynamic diameter of a protein. 60 μL of sample were filled into a ZEN0040 disposable micro cuvette and viscosity of buffer was determined by Rheostress 1. This parameter is used for analyzing effective size of proteins by DLS. Operation temperature was 25° C. with an equilibration time of 2 minutes. The proteins angle was set to 173° backscatter to measure the size of and 3 runs per sample were performed to average the results.
Samples were measured by increasing temperature mode to monitor the influence of temperature on a protein. Measurement procedure was similar to a normal size measurement, except for different temperatures with an increasing value of 1° C./min from 15° C. to 80° C. and an equilibration time of 2 min. A DTS2145 low volume glass cuvette was used for these temperature ramps.
Soluble Sugar Extraction Protocol
Longitudinal Metabolic Monitoring in Pregnancy
Plasma Amino Acid Analysis Protocol
Nitrite and Nitrate Detection by Griess Reaction
Barley Protein Extraction and Fractionation
Dynamic Light Scattering and Rheology
Example 18
Dynamic light scattering (DLS) was performed using a Malvern Nano Zetasizer ZS (Malvern Instruments Ltd Enigma Business Park, Grovewood Road, Malvern, Worcestershire, UK. WR14 1XZ) and a Haake Rheostress 1 (Thermo Fisher Scientific, Karlsruhe, Germany) equipped with a cone with 60 mm diameter/0.5° angle for buffer viscosity measurements.
All samples were centrifuged (Centrifuge 5415C, Eppendorf, Vienna, Austria) for 5 min at 10.000 rpm to determine the hydrodynamic diameter of a protein. 60 μL of sample were filled into a ZEN0040 disposable micro cuvette and viscosity of buffer was determined by Rheostress 1. This parameter is used for analyzing effective size of proteins by DLS. Operation temperature was 25° C. with an equilibration time of 2 minutes. The proteins angle was set to 173° backscatter to measure the size of and 3 runs per sample were performed to average the results.
Samples were measured by increasing temperature mode to monitor the influence of temperature on a protein. Measurement procedure was similar to a normal size measurement, except for different temperatures with an increasing value of 1° C./min from 15° C. to 80° C. and an equilibration time of 2 min. A DTS2145 low volume glass cuvette was used for these temperature ramps.
Plasma/CSF Cefazolin Extraction Protocol
Size-Exclusion HPLC Analysis
Example 17
SE-HPLC was performed using an AKTA Purifier “900-series” (GE Healthcare). The system was equipped with a Superose 12 GL column (GE Healthcare, TC10/30) which was run at a constant flow rate of 0.3 mL per minute at room temperature. As running buffer 20 mM Tris, 100 mM sodium acetate, 500 mM sodium chloride, pH 7.4 was used. The sample was centrifuged (Centrifuge 5415C, Eppendorf, Vienna, Austria) for 5 min at 10,000 rpm and 100 μL were applied automatically by an autosampler. The absorbance of the column effluent was measured continuously at 280 nm.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!