The largest database of trusted experimental protocols

Massarray designer

Manufactured by Labcorp

The MassArray Designer is a laboratory equipment product designed for the design and optimization of mass spectrometry-based assays. It provides a versatile platform for the development and validation of customized assays, supporting a range of applications in research and clinical settings.

Automatically generated - may contain errors

6 protocols using massarray designer

1

Genetic Variant Profiling of XAB2 in Chinese

Check if the same lab product or an alternative is used in the 5 most similar protocols
Based on the Han Chinese in Beijing (CHB) population data from HapMap database, we used Haploview 4.2 program to select candidate tag SNPs with an r2 threshold of 0.80 and minor allele frequency (MAF) greater than 1 %. For XAB2 gene, we extended the 5′- and 3′-untranslated regions (UTR) to include the 5′-UTR and 3′-UTR most SNP. As a result, 5 tagSNPs (2 in 5′ UTR, 2 in intron, 1 in exon region) in XAB2 were included, which represent the common genetic variants in Chinese population. Genotyping was performed at Bomiao Tech (Beijing, China) using iPlex Gold Genotyping Asssy and Sequenom MassArray (Sequenom, San Diego, CA, USA). Sequenom’s MassArray Designer was used to design PCR and extension primers for each SNP. The information on assay conditions and the primers are available upon request. Genotyping quality control consisted of no-temple control samples for allele peaks and verifying consistencies in genotype calls of 2 % randomly selected duplicate sample. In addition, we excluded individuals and SNPs based on genotyping quality (<90 % call rate).
+ Open protocol
+ Expand
2

Genotyping of Common Chinese Variants

Check if the same lab product or an alternative is used in the 5 most similar protocols
Based on the Chinese population data from HapMap database, we used HaploView 4.2 program to select the candidate tag SNPs with an r2 threshold of 0.8 and minor allele frequency (MAF) greater than 1%. Under this criteria, totally 11 tag SNPs were selected. Additionally, we added two potential functional SNPs, rs9429942 and rs6691117 18 (link), 19 (link). Therefore, we included 13 SNPs in our study, which represents common genetic variants in Chinese population.
Genotyping was performed at Bomiao Tech (Beijing, China) using iPlex Gold Genotyping Assay and Sequenom MassArray (Sequenom, San Diego, CA, USA). Sequenom's MassArray Designer was used to design PCR and extension primers for each SNP. The PCR primers used are available upon request. Genotyping quality control consisted of no-temple control samples for allele peaks and verifying consistencies in genotype calls of 2% randomly selected duplicate samples. In addition, two control samples were included on each plate as genotyping controls for inter-plate reproducibility. Hardy-Weinberg Equilibrium (HWE) was also evaluated in unrelated controls.
+ Open protocol
+ Expand
3

Genotyping of Common Variants in Chinese Population

Check if the same lab product or an alternative is used in the 5 most similar protocols
Based on the Chinese population data from HapMap database, we used Haploview 4.2 program to select candidate tag SNPs with an r2 threshold of 0.80 and minor allele frequency (MAF) greater than 1%. Furthermore, we also added two potential functional polymorphisms, rs9429942 and rs6691117 [42 (link),43 (link)]. Therefore, we included 13 SNPs in our study, which represents common genetic variants in Chinese population.
Genotyping was performed at Bomiao Tech (Beijing, China) using iPlex Gold Genotyping Asssy and Sequenom MassArray (Sequenom, San Diego, CA, USA). Sequenom’s MassArray Designer was used to design PCR and extension primers for each SNP. Primer information for selected tag SNPs was listed in Table 5.
+ Open protocol
+ Expand
4

TXNRD1 Genetic Variation Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
14 SNPs covering the whole TXNRD1 genetic variability were prioritized by a tagging approach, attempting to choose those most likely to be of functional relevance (nonsynonymous SNPs, SNPs located in the 5′ and 3′ UTR regions). SNPs associated with health status and longevity in Northern Europeans [14 (link), 15 (link)] were also chosen. SNPs with a minor allele frequency (MAF) less than 5% were excluded from the analysis.
Multiplex SNP genotyping was performed using iPLEX Gold Genotyping Assay and Sequenom MassARRAY (Sequenom, San Diego, CA, USA) according to manufacturer's instructions. Sequenom's MassARRAY Designer was used to design PCR and extension primers for each of the 14 SNPs selected. However, four of them (rs10861169, rs10861197, rs10047589, and rs4964287) were skipped by the software for primers design and were not analyzed in this paper. The details for genotyped SNPs are listed in Table 1.
+ Open protocol
+ Expand
5

Genotyping Breast Cancer Variants

Check if the same lab product or an alternative is used in the 5 most similar protocols
Associations between the selected variants and breast cancer were evaluated in further studies. Three variants were genotyped in a set of 250 SBC patients and 248FNCCs. Genotyping of the variants c.339G>A and c.973G>A was performed with the MassARRAY platform (Sequenom, San Diego, CA, USA) using the iPLEX Gold Assay. The amplification and its extended primers were designed by MassARRAY Designer of Sequenom. The information on the primers was listed in Table 2. The amplification reaction conditions were as follows: an initial denaturation at 94°C for 15 min, followed by 45 cycles of denaturing at 94°C for 20 s, annealing at 56°C for 30 s, and the extension at 72°C for 60 s; finally, the reaction was elongated at 72°C for 3 min. Reaction parameters of single-base extension were an initial incubation at 94°C for 30 s, followed by 40 cycles at 94°C for 5 s with 5 nested cycles of 52°C for 5 s and 80°C for 5 s, respectively. Finally, singe-base extension was completed at 72°C for 3 min. Experimental data were analyzed by Typer software version 4.0 (Sequenom, San Diego, CA, USA). Genotyping of the variants c.51G>C and c.758C>A was done by PCR-sequencing assay. The primers and reaction conditions were the same as those used in the mutation screening for FANCC gene exon1 and exon7.
+ Open protocol
+ Expand
6

Genotyping Extended CTLA-4 Gene Locus

Check if the same lab product or an alternative is used in the 5 most similar protocols
DNA was extracted from peripheral blood. Sixteen SNPs within the extended CTLA-4 gene locus (encompassing CD28, CTLA-4 and ICOS) were chosen (Fig. 1). Fourteen tag-SNPs were selected from the HapMap database, and an additional two SNPs (DIL107, promoter_1661) were chosen for their association with the autoimmune condition systemic lupus erythematosus (SLE) 15 (link). The DNA sequence flanking each SNP was found in the Ensembl database (approximately 300bp in length) and this sequence data was then used to generate a Sequenom iPlex assay, using the MassARRAY® Designer software (Sequenom). Compatibility of the multiplex assays was checked in silico. SNPs were genotyped using the Sequenom® MassARRAY technology (Sequenom®, San Diego). The Iplex assay was followed according to manufacturer’s instructions (www.sequenom.com) using 30ng of genomic DNA template.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!