Eclipse ti e inverted fluorescence microscope
The Eclipse Ti-E inverted fluorescence microscope is a high-performance imaging solution designed for advanced microscopy applications. It features a modular and flexible design that enables customization to suit various experimental requirements. The microscope is capable of delivering high-resolution, high-contrast images through its fluorescence imaging capabilities.
Lab products found in correlation
16 protocols using eclipse ti e inverted fluorescence microscope
Microfluidic Imaging of Living Cells
Apoptosis Induction Assay for PC-3 and DU-145 Cells
Immunofluorescence Analysis of Inflammatory Markers in Frozen Lung Tissue
Time-Lapse Microscopy of Bacterial Cultures
Cultures grown for 48 h were diluted 100-fold into PBS and 2 µL were spotted onto a 1% (w/v) agarose MRS pad. After drying at room temperature, the pads were covered with a cover slip, sealed with a mixture of equal portions of Vaseline, lanolin, and paraffin, and transferred to the microscope. Images were taken every 2 min using µManager v. 1.4.
To quantify the morphology of cells using fluorescent strains, co-cultures were diluted 100-fold into PBS and 2 µL were spotted onto a 1% (w/v) agarose PBS pad. After drying, the pads were covered with a cover slip and transferred to the microscope. Images were acquired at room temperature using µManager v. 1.4.
BPA Effects on Oligodendrocyte Markers
Quantifying Legionella-Containing Vacuole Architecture
Evaluating Cell Viability and Proliferation
Cell proliferation was determined using a CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay kit (MTS Assay; Promega). The absorbance was measured at 490 nm on a Multiskan® Spectrum spectrophotometer (Thermo Scientific). Given that the absorbance is directly proportional to the number of live cells, relative rate of cell proliferation was determined by calculating the fold change in absorbance compared to the 2D control. Matrigel samples with no cells seeded were used to correct for any potential background absorbance.
Live-cell imaging of bacterial cells
For single-cell imaging on agarose pads, 1 µL of cells was spotted onto a pad of 1% agarose in fresh LB. For microfluidic flow-cell experiments, including the spent medium assays, the oscillatory osmotic shock assays, and the plasmolysis/lysis assays, cells were loaded into CellASIC ONIX microfluidic flow cells (Sigma-Aldrich, Cat. #B04A-03-5PK) and medium was exchanged using the CellASIC ONIX2 microfluidic platform (Sigma-Aldrich, Cat. #CAX2-S0000).
Fluorescence in situ Hybridization Assay
Immunofluorescence Staining of Cell-Hydrogel Constructs
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!