R statistical computing environment
R is a free, open-source software environment for statistical computing and graphics. It provides a wide variety of statistical and graphical techniques, including linear and nonlinear modeling, classical statistical tests, time-series analysis, classification, clustering, and more. R is an interpreted language that can be used through a command-line interface or a graphical user interface.
Lab products found in correlation
15 protocols using r statistical computing environment
Assessing Functional Outcome Measures
Univariate and Survival Analyses
Weight Loss Patterns Analysis Protocol
Statistical Analysis Methodology in R
Epigenetic Profiling of Adipose Tissue
Pediatric and NICU Patient Outcomes
Quantitative Analysis of Smoking Cessation
Survival Analysis of Gastric GIST
Sleep Quality and BMI Associations
Metagenomic Analysis of Rectal Cancer
Fold changes for each genera/OTU were calculated using:
Chi-Square tests were performed on subject's categorical data such as gender, alcohol and tobacco use and vital status. Student t-tests were performed to compare differences in the means between both groups for age, height, weight, BMI, and alpha diversity. We used ANOSIM and ADONIS (Oksanen et al., 2016 ) to compare differences in beta-diversity between groups using 3 distance metrics weighted UniFrac, unweighted UniFrac and Bray-Curtis for categorical, and numerical variables, respectively. Linear models were built using normalized counts at the genera and OTU level to investigate associations with clinical-pathological characteristics of rectal-cancer samples, such as lymph node and perineural neoplastic invasion status. Unless otherwise stated, values were reported as mean ± SD (standard deviation) and P-values <0.05 were considered statistically significant. All calculations were performed within the R statistical computing environment (R Foundation, 2011 ) unless otherwise stated.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!