The largest database of trusted experimental protocols

5305 vacufuge plus concentrator

Manufactured by Eppendorf

The 5305 Vacufuge plus Concentrator is a laboratory centrifuge designed for sample concentration and solvent removal. It features a temperature range of -20°C to 60°C and can achieve a maximum speed of 1,800 rpm, with a corresponding maximum RCF of 485 x g. The Vacufuge plus can accommodate a variety of sample volumes and tube sizes.

Automatically generated - may contain errors

4 protocols using 5305 vacufuge plus concentrator

1

Detecting D-amino Acid tRNA Adducts

Check if the same lab product or an alternative is used in the 5 most similar protocols
To identify the accumulation of D-aa-tRNA adducts, overnight grown primary culture of DTD1 knockout E. coli was used to inoculate 1% secondary culture in minimal media with or without 2.5 mM D-tyrosine. Secondary culture grown to OD650 (optical density at 650 nm) 0.8 was subjected to respective aldehyde treatment (0.01% final concentration) with 0.5 mM NaCNBH3 at 37°C for 30 min. Cultures were pelleted and total RNA was isolated through acidic phenol chloroform method. Total RNA was digested with three volumes of aqueous ammonia (25% of vol/vol NH4OH) at 70°C for 18 hr (Mazeed et al., 2021 (link)). Hydrolysed samples were dried using Eppendorf 5305 Vacufuge plus Concentrator. Dried samples were resuspended in 10% methanol and 1% acetic acid in water and analysed via ESI-based mass spectrometry using a Q-Exactive mass spectrometer (Thermo Scientific) as mentioned above.
+ Open protocol
+ Expand
2

Comprehensive Analysis of D-aa-tRNA Modifications

Check if the same lab product or an alternative is used in the 5 most similar protocols
To identify the modification by various aldehydes on D-aa-tRNAs, modified and unmodified D-Phe-tRNAPhe were digested with aqueous ammonia (25% of vol/vol NH4OH) at 70°C for 18 hr (Mazeed et al., 2021 (link)). Hydrolysed samples were dried using Eppendorf 5305 Vacufuge plus Concentrator. Dried samples were resuspended in 10% methanol and 1% acetic acid in water and analysed via ESI-based mass spectrometry using a Q-Exactive mass spectrometer (Thermo Scientific) by infusing through heated electrospray ionisation source operating at a positive voltage of 3.5 kV. Targeted selected ion monitoring (t-SIM) was used to acquire the mass spectra (at a resolving power of 70,000@200 m/z) with an isolation window of 2 m/z, i.e., theoretical m/z and MH+ ion species. The high energy collision-induced MS-MS spectra with a normalised collision energy of 25 of the selected precursor ion species specified in the inclusion list (having the observed m/z value from the earlier t-SIM analysis) were acquired using the method of t-SIM-ddMS2 (at an isolation window of 1 m/z at a ddMS2 resolving power of 35,000@200 m/z).
+ Open protocol
+ Expand
3

Probing Aldehyde Modification Propensity on tRNA

Check if the same lab product or an alternative is used in the 5 most similar protocols
A single-step method was used for probing relative modification propensity of the aldehyde with aa-tRNA where 0.2 µM of Ala-tRNAAla was incubated with different concentrations of aldehydes (2 mM and 10 mM) along with 20 mM NaCNBH3 (in 100 mM potassium acetate [pH 5.4]) as a reducing agent at 37°C for 30 min. The reaction mixture was digested with S1 nuclease and analysed on TLC. Except for decanal, all the aldehydes modified Ala-tRNAAla. The method for processing and quantification of modification on aa-tRNA utilised is discussed earlier (Mazeed et al., 2021 (link)). However, a two-step method was used for generating substrates for biochemical assays as discussed earlier (Mazeed et al., 2021 (link)). It was used to generate maximum homogenous modification on the aa-tRNAs for deacylation assays. Briefly, 2 µM aa-tRNAs were incubated with 20 mM of formaldehyde, and methylglyoxal or 1 M of propionaldehyde, butyraldehyde, valeraldehyde, and isolvaleraldehyde at 37°C for 30 min. Samples were dried to evaporate excess aldehydes using Eppendorf 5305 Vacufuge plus Concentrator. The dried mixture was then reduced with 20 mM NaCNBH3 at 37°C for 30 min. All reactions were ethanol-precipitated at –30°C overnight or –80°C for 2 hr. Ethanol precipitated pellets were resuspended in 5 mM sodium acetate (pH 5.4) and used for biochemical assays.
+ Open protocol
+ Expand
4

Acetaldehyde Sensitivity Profiling

Check if the same lab product or an alternative is used in the 5 most similar protocols
A single-step method was used to find relative acetaldehyde sensitivities of aa-tRNAs (acetaldehyde titration with aa-tRNA), aa-tRNA analogs, free amino acids, peptides, and nucleotides. In this method, 200 μM of each of aa-tRNA (Phe-tRNAPhe and Tyr-tRNATyr), nonhydrolyzable analogs (d-Tyr2AA and l-Val3AA), amino acids (d-Tyr and l-Val), peptides (peptides 1 and 2), and nucleotides [adenosine 5′-monophosphate (AMP) and guanosine 5′-monophosphate (GMP)] were incubated with different concentrations of acetaldehyde [200 μM, 1 mM, 2 mM, 20 mM, 200 mM, and 2 M (stocks were prepared in ethanol)] “along with 400 mM NaCNBH3” [stock was prepared in 100 mM potassium acetate (pH 5.4)] at 37°C for 30 min. Except for aa-tRNA, all the other samples were subjected to Eppendorf 5305 Vacufuge plus Concentrator to concentrate the sample. Samples were characterized using MS without any further processing. The method for processing and quantification of modification on aa-tRNA is discussed in detail below.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!