The largest database of trusted experimental protocols

Homogeneous birdcage head coil

Manufactured by Siemens

The Homogeneous birdcage head coil is a specialized lab equipment designed for magnetic resonance imaging (MRI) applications. It serves as a radio frequency (RF) coil that generates a uniform magnetic field within the imaging area, enabling high-quality imaging of the human head and brain.

Automatically generated - may contain errors

Lab products found in correlation

3 protocols using homogeneous birdcage head coil

1

Multimodal Brain Imaging Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
MRI studies were performed in a Siemens 3.0 Tesla scanner using a homogeneous birdcage head coil. Subjects lay supine and were required to close their eyes, stay awake and avoid thinking specific thoughts while in the scanner. We used ear plugs and earphones to attenuate scanner noise and a head cushion to reduce head motion. High-resolution 3-dimensional T1WI scans were acquired using a spoiled gradient-echo sequence [repetition time (TR) = 1900 ms, echo time (TE) = 2.48 ms, flip angle (FA) = 90°, field of view (FOV) = 256 mm × 256 mm, acquisition matrix = 256 × 256, slices = 176, section thickness = 1.0 mm]. A gradient-echo-planar imaging sequence was set up to obtain functional images (TR = 2000 ms, TE = 25 ms, 36 slices, section thickness = 4.0 mm, FA = 90°, FOV = 240 mm × 240 mm, acquisition matrix = 64 × 64). Subsequent ASL perfusion MR was performed using a Siemens product pulsed-ASL (pASL) PICORE Q2T sequence (TR = 4000 ms, TE = 12 ms, 27 slices, thickness = 4 mm; FA = 90°; matrix = 64 × 64; FOV = 220 mm × 220 mm).
+ Open protocol
+ Expand
2

Resting-State fMRI Acquisition Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
All subjects underwent the MRI scans at the Affiliated Zhongda Hospital of Southeast University. The subjects were scanned using a Siemens 3.0 Tesla scanner with a homogeneous birdcage head coil. Subjects lay supine with their head snugly fixed by a belt and foam pads to minimize head motion. The MRI acquisition sequences generated 240 volumes in 8 minutes and 176 slices in 4.3 minutes. All subjects were instructed to keep their eyes closed, relax, remain awake and to not think anything specific during scanning.
+ Open protocol
+ Expand
3

Resting-State fMRI Acquisition Protocols for Brain Imaging

Check if the same lab product or an alternative is used in the 5 most similar protocols
All subjects underwent the MRI scans at the Affiliated Nanjing Brain Hospital of Nanjing Medical University. The subjects were scanned using a Siemens 3.0 Tesla scanner with a homogeneous birdcage head coil. Subjects lay supine with the head snugly fixed by a belt and foam pads to minimize head motion. A gradient-recalled echo-planar imaging (GRE-EPI) pulse sequence was set up to acquire resting-state images. The acquisition parameters of RS-fMRI were as follows: repetition time = 2000 ms; echo time = 30 ms; flip angle = 90°; acquisition matrix = 64 × 64; field of view = 240 mm2 × 240 mm2; thickness = 4.0 mm; gap = 0 mm; 31 axial slices and 3.75 mm2 × 3.75 mm2 in-plane resolution parallel to the anterior commissure-posterior commissure line. High-resolution T1-weighted axial images covering the whole brain were acquired utilizing a 3-dimensional inversion recovery prepared fast spoiled gradient echo (SPGR) sequence presented as follows: repetition time = 1900 ms; echo time = 2.48 ms; flip angle = 9°; acquisition matrix = 256 × 96; field of view = 250 mm × 200 mm; thickness = 1.0 mm; gap = 0 mm. Those above acquisition sequences generated 140 volumes in 7 min 6 s and 128 slices in 4.3 min, respectively. All subjects were guided to keep their eyes closed and to relax, to remain awake and not to think anything specific during scanning.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!