The largest database of trusted experimental protocols

Clone 80h3

Manufactured by BD

The Clone 80H3 is a laboratory instrument designed for general purpose use in scientific research and analysis. It offers core functionality for performing tasks related to sample preparation, processing, and analysis. The product specifications and technical details are available upon request.

Automatically generated - may contain errors

2 protocols using clone 80h3

1

Isolation and Sequencing of Individual Prostate Cancer CTCs

Check if the same lab product or an alternative is used in the 5 most similar protocols
CTCs were isolated from fresh blood specimens drawn from patients with prostate cancer, following negative depletion of leukocytes using the microfluidic CTC-iChip as reported previously26 (link),27 (link). Briefly, 10–20 ml of whole blood specimens were incubated with biotinylated antibody cocktails against CD45 (R&D Systems, clone 2D1), CD66b (AbD Serotec, clone 80H3), and CD16 (BD Biosciences), followed by incubation with Dynabeads MyOne Streptavidin T1 (Invitrogen) for magnetic labeling and depletion of leukocytes. After CTC-iChip processing, the CTC-enriched product was further stained with FITC-conjugated antibody against EpCAM (Cell Signaling Technology, clone VU1D9) and PE-conjugated antibody against CD45 (BD Biosciences, clone HI30). Single CTCs (FITC positive and PE negative) or white blood cells (WBCs, FITC negative and PE positive) were individually picked into PCR tubes containing 5 μl RNA/DNA lysis buffer using micromanipulator (Eppendorf TransferMan NK 2) and snap-frozen in liquid nitrogen. In total, 38 CTCs from 5 different patients (GU114, GU169, GU181, GU216 and GURa15) with metastatic prostate cancer were individually picked, sequenced and lineage-confirmed based on transcriptome and DNA copy number. One patient sample (GU169) had only one CTC, and it was therefore excluded from some downstream analyses focused on the four patients with multiple CTCs.
+ Open protocol
+ Expand
2

Isolation and Sequencing of Individual Prostate Cancer CTCs

Check if the same lab product or an alternative is used in the 5 most similar protocols
CTCs were isolated from fresh blood specimens drawn from patients with prostate cancer, following negative depletion of leukocytes using the microfluidic CTC-iChip as reported previously26 (link),27 (link). Briefly, 10–20 ml of whole blood specimens were incubated with biotinylated antibody cocktails against CD45 (R&D Systems, clone 2D1), CD66b (AbD Serotec, clone 80H3), and CD16 (BD Biosciences), followed by incubation with Dynabeads MyOne Streptavidin T1 (Invitrogen) for magnetic labeling and depletion of leukocytes. After CTC-iChip processing, the CTC-enriched product was further stained with FITC-conjugated antibody against EpCAM (Cell Signaling Technology, clone VU1D9) and PE-conjugated antibody against CD45 (BD Biosciences, clone HI30). Single CTCs (FITC positive and PE negative) or white blood cells (WBCs, FITC negative and PE positive) were individually picked into PCR tubes containing 5 μl RNA/DNA lysis buffer using micromanipulator (Eppendorf TransferMan NK 2) and snap-frozen in liquid nitrogen. In total, 38 CTCs from 5 different patients (GU114, GU169, GU181, GU216 and GURa15) with metastatic prostate cancer were individually picked, sequenced and lineage-confirmed based on transcriptome and DNA copy number. One patient sample (GU169) had only one CTC, and it was therefore excluded from some downstream analyses focused on the four patients with multiple CTCs.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!