The CA was measured using the sessile drop method (Young–Laplace), i.e. drop of liquid was deposited on a solid surface (paraffin). The drop was produced before the measurement and had a constant volume during the measurement. In this method the complete drop contour was evaluated. After the successful fitting of the Young–Laplace equation the CA was determined as the slope of the contour line at the 3-phase contact point.
Drop shape analysis system dsa100e
The Drop Shape Analysis System DSA100E is a laboratory equipment designed for the precise measurement and analysis of liquid surface tension and contact angles. It provides accurate and reproducible data on the wetting behavior of liquids and solids.
4 protocols using drop shape analysis system dsa100e
Surface Tension and Contact Angle Measurement
The CA was measured using the sessile drop method (Young–Laplace), i.e. drop of liquid was deposited on a solid surface (paraffin). The drop was produced before the measurement and had a constant volume during the measurement. In this method the complete drop contour was evaluated. After the successful fitting of the Young–Laplace equation the CA was determined as the slope of the contour line at the 3-phase contact point.
Wettability and Surface Free Energy Measurement
The surface free energy (σs) was determined with the Owens, Wendt, Rabel, and Kaelble method (OWRK), which is a standard method for calculating the surface free energy of a solid from the contact angle with several liquids – polar (water) and nonpolar (diiodomethane). The calculation of surface free energy (SEF) using the Young equations [42 (link)] (Equation (1)) and the Fowkes method [43 ] was carried out. The interfacial tension σsl is calculated based on the two surface tensions σs and σl and the similar interactions between the phases. These interactions can be interpreted as the geometric mean of a disperse part σD and a polar part σP of the surface tension or surface free energy (Equation (2)).
Contact Angle Measurement Technique
Characterization of Electrospun Polymer Composites
A scanning electron microscope (SEM) (Hitachi S-3400N, Tokyo, Japan) was applied to observe the surface morphology of the PS/SA/bacteria composite. The average diameter of the PS electrospun fibers was calculated using ImageJ National Institute of Health software (1.53, Bethesda, MD, USA) from 100 points randomly selected from the CLSM images.FT-IR analyses were performed on a Vertex V70 FT-IR spectrometer (Bruker Optik GmbH, Leipzig, Germany) further equipped with a Platinum-ATR-unit (Bruker Optik GmbH, Leipzig, Germany), The material was placed onto the ATR crystal and scanned. To analyze recorded IR spectra the OPUS (7.2, Bruker Optik GmbH, Leipzig, Germany) software was used.
The contact angle was calculated based on measurements made of contact angles of water, LB broth, and milk drops on the surfaces of the materials with the accuracy ±0.01 mN/m using a Drop Shape Analysis System DSA100E (KRÜSS GmbH, Hamburg, Germany).
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!