The largest database of trusted experimental protocols

Lf200 microscope

Manufactured by Leica camera

The LF200 microscope is a high-performance laboratory instrument designed for detailed examination and analysis. It features a robust construction, advanced optics, and precise controls to deliver clear and detailed images. The core function of the LF200 is to provide users with a versatile and reliable tool for a wide range of microscopy applications.

Automatically generated - may contain errors

3 protocols using lf200 microscope

1

Immunohistochemical Staining Protocol for Cell Markers

Check if the same lab product or an alternative is used in the 5 most similar protocols
IHC staining was carried out as previously described [15 (link)]. In brief, tissue Sections (4 μm) were dewaxed in xylene twice for 2 min each and then rehydrated in a graded series of ethanol (100–70%). Antigen retrieval was performed by boiling sections for 15 min in sodium citrate buffer (10 mM citrate acid, 10 mM sodium citrate, pH 6.0). Then, 5% normal donkey serum was used to block nonspecific antigens. IHC was performed using the Dako EnvisionTM method for antibody incubation and then developed by using the DAB peroxidase substrate kit (Beyotime, P0202). IHC-stained sections were imaged by a Leica LF200 microscope.
Antibodies for IHC included anti-S100 (Dako Z0311, 1:200), anti-Calponin (Dako M3556, 1:100), anti-SMA (Dako M0851, 1:100), anti-CK7 (Dako M7018, 1:50) and anti-CK19 (Dako M0888, 1:100), anti-FZD2 (Bioworld BS3163, 1:50), which were purchased from commercial sources.
+ Open protocol
+ Expand
2

Tissue Fixation and Histological Preparation

Check if the same lab product or an alternative is used in the 5 most similar protocols
All IMPA tissues and adjacent normal controls were fixed in 4% PFA for  > 4 h at 4 °C. Then, these fixed tissues were dehydrated with graded ethanol (70–100%) and embedded in paraffin. Sections (4 μm) were cut on a Leica HistoCore BIOCUT RM2235. Hematoxylin–eosin (H&E) staining was performed following standard procedures. Stained sections were imaged using a Leica LF200 microscope.
+ Open protocol
+ Expand
3

Immunohistochemical Analysis of SYDE1 in Glioma

Check if the same lab product or an alternative is used in the 5 most similar protocols
Immunohistochemistry (IHC) was performed on paraffin-embedded human glioma and normal brain tissues collected from Shanghai Ninth People’s Hospital. The sections were deparaffinized in a xylene gradient and rehydrated in an ethanol gradient. Antigen retrieval was performed in sodium citrate buffer (10 mM sodium citrate pH 6.0) at 100 C for 20 min. Then, endogenous peroxidase was deactivated by applying 3% H2O2 in methanol. IHC of SYDE1 was performed by the Dako EnvisionTM method. Briefly, the sections (3 μm) were sequentially incubated with the anti-SYDE1 antibody (NBP1-89350, Novus Biologicals) and the HRP-conjugated secondary antibody (ab6721, Abcam). Then, the sections were color-developed with a DAB Immunohistochemistry Color Development Kit (E670033, Sangon Biotech) and counterstained with hematoxylin.
A Leica LF200 microscope was used to image the stained sections. The intensity of SYDE1 signals was scored as negative (0), weak (1) or strong (2). The staining extent of SYDE1 was evaluated according to the immunoreactive tumor cell percentage, which was scored as I (0%, score = 0), II (1–5%, score = 1), III (6–25%, score = 2), IV (26–75%, score = 3) and V (76–100%, score = 4). SYDE1 signals (ranging from 0 to 8) were calculated by multiplying the intensity score with the staining extent score and were classified into low (0–4) or high (5–8) groups for Fisher’s exact tests.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!