The largest database of trusted experimental protocols

Dowex 1x2

Manufactured by Dow
Sourced in United States

Dowex 1X2 is a strong-base anion exchange resin. It is a polymeric material with a polystyrene-divinylbenzene matrix and quaternary ammonium functional groups. Dowex 1X2 is designed for use in various chemical and industrial applications that require ion exchange capabilities.

Automatically generated - may contain errors

Lab products found in correlation

5 protocols using dowex 1x2

1

Efficient GHB Extraction Using Dowex 1X2 Resin

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

A gel-type Type 1 strong base anion exchange resin, Dowex 1X2 (Dow Chemical), 100-200 mesh was loaded with GHB as follows. Calcium oxybate was loaded onto resin in a batch equilibration by combining 10 mL of 4 M calcium oxybate solution (approximately 490 mg/mL), 31.7 mL of de-ionized water, and 20.27 g of Dowex 1X2 wet resin as chloride form with 2% crosslinking. After mixing for 2 hours, the resin was filtered under mild vacuum using a Buchner funnel. It was then washed with 700 mL of de-ionized water in approximately 100-150 mL aliquots to remove any free oxybate. The wet beads were then dried in a 60° C. oven for 3.5 hours, and finally sized through a 36-mesh screen. The resinate beads were assayed by suspending 1.5 g of resinate in 12.5 g of 1 M calcium chloride and allowing them to equilibrate overnight at room temperature. The solution was analyzed by HPLC, and the measured oxybate released from the beads was 1.09 mEq per gram of dry resinate. The calculated loading efficiency was 1.14 mEq/gram dry resin, or 33% of the theoretical exchange capacity of the resin.

+ Open protocol
+ Expand
2

Calcium Oxybate Uptake on Dowex 1X2 Resin

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

A gel-type Type 1 strong base anion exchange resin, Dowex 1X2 (Dow Chemical), 100-200 mesh was loaded with GHB as follows. Calcium oxybate was loaded onto resin in a batch equilibration by combining 10 mL of 4 M calcium oxybate solution (approximately 490 mg/mL), 31.7 mL of de-ionized water, and 20.27 g of Dowex 1X2 wet resin as chloride form with 2% crosslinking. After mixing for 2 hours, the resin was filtered under mild vacuum using a Buchner funnel. It was then washed with 700 mL of de-ionized water in approximately 100-150 mL aliquots to remove any free oxybate. The wet beads were then dried in a 60° C. oven for 3.5 hours, and finally sized through a 36-mesh screen. The resinate beads were assayed by suspending 1.5 g of resinate in 12.5 g of 1 M calcium chloride and allowing them to equilibrate overnight at room temperature. The solution was analyzed by HPLC, and the measured oxybate released from the beads was 1.09 mEq per gram of dry resinate. The calculated loading efficiency was 1.14 mEq/gram dry resin, or 33% of the theoretical exchange capacity of the resin.

+ Open protocol
+ Expand
3

Efficient GHB Extraction Using Dowex 1X2 Resin

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

A gel-type Type 1 strong base anion exchange resin, Dowex 1X2 (Dow Chemical), 100-200 mesh was loaded with GHB as follows. Calcium oxybate was loaded onto resin in a batch equilibration by combining 10 mL of 4 M calcium oxybate solution (approximately 490 mg/mL), 31.7 mL of de-ionized water, and 20.27 g of Dowex 1X2 wet resin as chloride form with 2% crosslinking. After mixing for 2 hours, the resin was filtered under mild vacuum using a Buchner funnel. It was then washed with 700 mL of de-ionized water in approximately 100-150 mL aliquots to remove any free oxybate. The wet beads were then dried in a 60° C. oven for 3.5 hours, and finally sized through a 36-mesh screen. The resinate beads were assayed by suspending 1.5 g of resinate in 12.5 g of 1 M calcium chloride and allowing them to equilibrate overnight at room temperature. The solution was analyzed by HPLC, and the measured oxybate released from the beads was 1.09 mEq per gram of dry resinate. The calculated loading efficiency was 1.14 mEq/gram dry resin, or 33% of the theoretical exchange capacity of the resin.

+ Open protocol
+ Expand
4

ε-Polylysine Purification and Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
A portion (0.1 mg) of ε-PL TFA salt in water (100 μL) was applied on a column of strong anion exchange resin Dowex-1-X2 (0.1 mL; Dow Chemical Co., Midland, MI, USA). The column was eluted with water (100 μL × 10 fractions), and the fractions 3–7 were used for MALDI-TOF MS analysis to determine the degree of polymerization of ε-PL. The theoretical m/z value for each degree of polymerization was calculated as the centroid value of the constituent isotope peaks. A standard ε-PL (free polyamine form) originated from Streptomyces albulus, gifted by the Yokohama Research Center, JNC Co. (Yokohama, Japan), was also analyzed for comparison.
+ Open protocol
+ Expand
5

Dowex 1X2 Resin Calcium Oxybate Loading

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

A gel-type Type 1 strong base anion exchange resin, Dowex 1X2 (Dow Chemical), 100-200 mesh was loaded with GHB as follows. Calcium oxybate was loaded onto resin in a batch equilibration by combining 10 mL of 4 M calcium oxybate solution (approximately 490 mg/mL), 31.7 mL of de-ionized water, and 20.27 g of Dowex 1X2 wet resin as chloride form with 2% crosslinking. After mixing for 2 hours, the resin was filtered under mild vacuum using a Buchner funnel. It was then washed with 700 mL of de-ionized water in approximately 100-150 mL aliquots to remove any free oxybate. The wet beads were then dried in a 60° C. oven for 3.5 hours, and finally sized through a 36-mesh screen. The resinate beads were assayed by suspending 1.5 g of resinate in 12.5 g of 1 M calcium chloride and allowing them to equilibrate overnight at room temperature. The solution was analyzed by HPLC, and the measured oxybate released from the beads was 1.09 mEq per gram of dry resinate. The calculated loading efficiency was 1.14 mEq/gram dry resin, or 33% of the theoretical exchange capacity of the resin.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!