The largest database of trusted experimental protocols

Tem 2010 electron microscope

Manufactured by JEOL
Sourced in Japan

The JEOL TEM 2010 is a transmission electron microscope that allows for high-resolution imaging and analysis of samples at the nanoscale level. It is designed to provide clear and detailed images of a wide range of materials, including biological specimens, metals, and ceramics. The TEM 2010 utilizes advanced electron optics and imaging technologies to deliver reliable and consistent performance.

Automatically generated - may contain errors

2 protocols using tem 2010 electron microscope

1

Multimodal Characterization of Nanoparticles

Check if the same lab product or an alternative is used in the 5 most similar protocols
1H NMR spectra were obtained on Bruker Ultra Shield Plus 300 MHz, using CDCl3, DMSO-6d as the solvent. The nanoparticles morphology was obtained by TEM images (a JEOL TEM 2010 electron microscope at an acceleration voltage of 100 kV). UV-vis spectra were obtained on a SHIMADZU UV-2501 spectrophotometer. DLS was performed on the Malvern Zeta Sizer Nano S. Confocal laser scanning microscopy was conducted on a Zeiss LSM 780. PA spectra and PA/US images were performed by a LAZR instrument (Visualsonics, 2100 High-Resolution Imaging System). Endra Nexus128 PA tomography system (Endra Inc., Ann Arbor, Michigan) was also used in this study.
+ Open protocol
+ Expand
2

Spectroscopy and Microscopy Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
A JASCO UV-550 spectrophotometer was used
for the measurements of UV–vis spectra. 1H NMR spectra
(1H-400 MHz) were recorded on a Bruker DPX 400 spectrometer.
Elemental analyses were carried out with an Elementary Vario El. IR
spectra were recorded using a Bruker Tensor 37 spectrometer. The TEM
measurements were achieved by using a JEOL TEM-2010 electron microscope
(Japan) equipped with a charge-coupled device camera, operated at
200 kV. SEM images were obtained using a JEOL JEM-6510A scanning electron
microscope at 10 kV. The AFM images were recorded from a Bruker Multimode
8 system with a silicon cantilever by using tapping mode. XRD was
measured on a Rigaku TTRIII X-ray diffractometer (Japan) with Cu Kα
radiation (λ = 1.54 Å), which was operated at 45 kV, 100
mA. F-4500 FL spectrophotometer and JASCO J-815 CD spectropolarimeter
were used for fluorescence spectral measurements and CD spectral measurements,
respectively. For photodegradation measurements, a 500 W xenon arc
lamp (CEL-LAX-500 W, Beijing Aulighttech Co. Ltd, China) served as
the light source. In addition, the photodegradation experiment was
performed on a photocatalytic reactor which came from Beijing Aulighttech
Co. Ltd, China.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!