The largest database of trusted experimental protocols

Molecular probes celltracker green cmfda dye

Manufactured by Thermo Fisher Scientific

Molecular Probes CellTracker Green CMFDA Dye is a fluorescent cell-permeant compound that can be used to label and track living cells. The dye is metabolized by intracellular esterases, which convert the non-fluorescent compound into a strongly fluorescent derivative that is retained within the cell.

Automatically generated - may contain errors

3 protocols using molecular probes celltracker green cmfda dye

1

Isolation of Classical and Non-Classical Monocytes

Check if the same lab product or an alternative is used in the 5 most similar protocols
Classical (CL) and non-classical (NC) monocytes were isolated from peripheral blood using the protocol described in Jin et al. (29 (link)) (Supplemental Figure 1). Briefly, CL (CD14++CD16–) monocytes were purified using the Human Pan-Monocyte Isolation Kit (Miltenyi) with modification of adding anti-CD16-biotin (Miltenyi) into the biotin–antibody cocktail. CD14+ selection (Miltenyi) was used subsequently to further increase purity. Purified CL monocytes were stained with Molecular Probes CellTracker Green CMFDA Dye (Life Technologies). NC (CD14dimCD16+) monocytes were purified similarly, using CD16 microbeads (Miltenyi) during positive selection. Purity checked by flow cytometry was very high (>95%) for both CL and NC monocytes (Supplemental Figure 1).
+ Open protocol
+ Expand
2

Single-Cell Isolation of Monocyte Subsets

Check if the same lab product or an alternative is used in the 5 most similar protocols
Single-cells from each bulk monocyte subset were isolated using Fluidigm C1 Single-Cell Auto Prep System. Purified CL monocytes were stained with Molecular Probes™ CellTracker™ Green CMFDA Dye (Life Technologies), while NCL monocytes were unstained before loading to C1 Single-Cell Auto Prep Array Integrated Fluidic Circuits (IFCs). CL and NCL monocytes were then sequentially loaded onto the C1 Integrated Fluidic Circuit (IFC). CL vs. NCL monocyte lineage of individual cells was determined by direct visualization using fluorescent microscopy, and at the same time, empty wells and wells that contained more than one cell were marked to exclude from later analysis. The IFCs were then examined using fluorescent microscopy, and the captured cells were identified as CL (stained) or NCL (not stained). Wells that contained more than one cell were also noted to exclude from later analysis. We captured 470 CL and 394 NCL cells from the SLE patients in total, averaging between 50 to 60 single cells per patient across both monocyte subsets, after excluding doublets and fragments. These results represent a 60% capture site efficiency.
+ Open protocol
+ Expand
3

Isolation and Characterization of Monocyte Subsets

Check if the same lab product or an alternative is used in the 5 most similar protocols
50 mL of peripheral blood was drawn from each subject into heparinised tubes. PBMCs were isolated over Ficoll-Paque Plus (GE Healthcare Bio-Sciences AB, Sweden). CD14++CD16− CL monocytes were purified by a magnetic separation, using the Human Pan-Monocyte Isolation Kit (Miltenyi) with modification of adding anti-CD16-biotin (Miltenyi) into the biotin–antibody cocktail, and a subsequent CD14+ selection (Miltenyi) was used to further increase purity. Purified CL monocytes were stained with Molecular Probes CellTracker Green CMFDA Dye (Life Technologies). CD14dimCD16NCL monocytes were purified similarly. CD16 microbeads (Miltenyi) were used during positive selection. Purity was checked by flow cytometry, and via this protocol, we achieved very high purity of both CL and NCL monocytes (see online supplementary figure 1). Cells were stained for CD56 and for human leukocyte antigen (HLA) DR. Natural killer (NK) cells were excluded by being HLADR and CD56+ or dim.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!