The largest database of trusted experimental protocols

Q150t turbo pumped es sputter coater carbon coater

Manufactured by Quorum Technologies

The Q150T Turbo-pumped ES sputter coater/carbon coater is a versatile laboratory equipment designed for thin film deposition. It features a high-performance turbo-molecular pump and an electron beam evaporation source for sputtering or carbon coating of samples.

Automatically generated - may contain errors

2 protocols using q150t turbo pumped es sputter coater carbon coater

1

Fabrication of Au-Ni-TiO2 Janus Micromotors

Check if the same lab product or an alternative is used in the 5 most similar protocols
For the Au–Ni–TiO2 magnetic Janus micromotors, the TiO2 particle monolayers were prepared according to the above method. The particles were then sputter-coated with a thin nickel layer over 60 s using a Q150T Turbo-pumped ES sputter coater/carbon coater (Quorum). The nickel layer thickness is 10 nm, as measured by a Dektak 150 Surface Profiler (Veeco). The particles were subsequently sputter-coated with a layer of gold (40 nm) over 3 cycles of 60 s.
+ Open protocol
+ Expand
2

Fabrication of TiO2-Au Janus Micromotors

Check if the same lab product or an alternative is used in the 5 most similar protocols
TiO2 microspheres were prepared using a previously reported solvent extraction/evaporation method [43 (link)]. Firstly, titanium butoxide (1.0 mL, Sigma #244112) was dissolved in ethanol (40 mL), and the resulting solution stirred for 3 min. After this time, the solution was incubated at room temperature for 3 h. The resulting TiO2 microspheres were then collected by centrifugation at 8000 rpm for 5 min and washed three times with ethanol (Guangzhou Chemical Reagent Co.) and ultrapure water (18.2 MΩ cm), prior to drying in air at room temperature. The TiO2 microspheres were then annealed at 400 °C for 2 h to obtain anatase TiO2 microspheres (1.0 μm mean diameter), which were then employed as base particles for the TiO2–Au light-driven Janus micromotors. After dispersion of the TiO2 particles (1.0 mg) in ethanol (2.0 mL), the resulting suspension was dropped onto glass slides and dried uniformly at ambient temperature to give particle monolayers. These particles were then partially covered with a thin gold layer by 3 cycles of 60 s ion sputtering (Q150T Turbo-pumped ES sputter coater/carbon coater, Quorum). The resulting metal layer thickness is 40 nm, as measured by a Dektak 150 Surface Profiler (Veeco). Finally, the desired TiO2–Au Janus micromotors were obtained following sonication of the glass slide in deionized water for 5 s.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!