The imaging protocol lasted approximately 45 minutes and included the following scan sequences which all provided whole head coverage: I. axial Fluid Attenuated Inversion Recovery (FLAIR): repetition time (TR) = 9000ms, echo time (TE) = 130ms, inversion time (TI) = 2200ms, 28 slices of 5mm thickness without slice gap, field of view (FOV) = 240x240mm2, matrix = 256x192; II. coronal T1-weighted spoiled gradient recalled echo (SPGR): TR = 11.5ms, TE = 5ms, 176 slices without slice gap, FOV = 240x240mm2, matrix = 256x192, flip angle = 18°, providing 1.1mm3 isotropic voxels; and III. axial single shot spin echo planar diffusion-weighted imaging: TR = 15600ms, TE = 93.4ms, 55 slices without slice gap with isotropic voxels of 2.5mm3, FOV = 240x240 mm2, matrix = 96x96, 8 non-diffusion-weighted images (b = 0 smm-2) followed by diffusion-weighted volumes with diffusion gradients applied (b = 1000 smm-2) in 25 non-collinear directions and the negative of these.
Signa hdxt system
The Signa HDxt system is a magnetic resonance imaging (MRI) scanner developed by GE Healthcare. It is designed to produce high-quality images of the body's internal structures and functions. The Signa HDxt system utilizes advanced technology to enable efficient and accurate data acquisition, processing, and visualization. Its core function is to provide healthcare professionals with the necessary tools for diagnostic and clinical applications.
5 protocols using signa hdxt system
Multimodal MRI Neuroimaging Protocol
The imaging protocol lasted approximately 45 minutes and included the following scan sequences which all provided whole head coverage: I. axial Fluid Attenuated Inversion Recovery (FLAIR): repetition time (TR) = 9000ms, echo time (TE) = 130ms, inversion time (TI) = 2200ms, 28 slices of 5mm thickness without slice gap, field of view (FOV) = 240x240mm2, matrix = 256x192; II. coronal T1-weighted spoiled gradient recalled echo (SPGR): TR = 11.5ms, TE = 5ms, 176 slices without slice gap, FOV = 240x240mm2, matrix = 256x192, flip angle = 18°, providing 1.1mm3 isotropic voxels; and III. axial single shot spin echo planar diffusion-weighted imaging: TR = 15600ms, TE = 93.4ms, 55 slices without slice gap with isotropic voxels of 2.5mm3, FOV = 240x240 mm2, matrix = 96x96, 8 non-diffusion-weighted images (b = 0 smm-2) followed by diffusion-weighted volumes with diffusion gradients applied (b = 1000 smm-2) in 25 non-collinear directions and the negative of these.
MRI-based Total Gray Matter Volume Estimation
In order to obtain the TGMV, all MRI scans were processed using FreeSurfer v6.0 (Fischl, 2012 (link)). TGMV was calculated as the sum of the cerebral cortical volume, the subcortical grey matter and the cerebellum grey matter (
T2-weighted MRI Acquisition Protocol
Multimodal Imaging Protocol for Cancer Evaluation
CT scans were performed using a 16-section multidetector row CT scanner (Philips Brilliance Big Bore, Philips Healthcare, Cleveland, OH). Head and neck CT was performed after administration of 80–120 mL of a nonionic contrast (Optiray 320; Mallinckrodt). MRI examinations were performed at 1.5 T MR scan (SignaHDxT system, GE Medical Systems, Milwaukee, WI). MRI protocol included axial T1-and T2-weighted images, coronal T2-weighted fat saturated images and T1-weighted images after intravenous administration of gadolinium-based paramagnetic contrast agent (10 ml of gadoversetamide, Optimark® Mallinckrodt). Two experienced medical radiologists reviewed all CT and MRI images.
Whole body 18F-FDG PET/CT imaging was performed 60 minutes after intravenous injection of 0.154 mCi/Kg of 18F-FDG (IPEN-CNEN). Patients with normal blood glucose levels were injected at rest and after at least 4 hours of fasting. Both low dose CT and dedicated PET imaging protocols, starting from the head to the proximal thigh, were acquired in a 64 channel PET/CT (Gemini TOF, Philips Medical Systems). Nuclear medicine specialists with 15 and 25 years of experience reviewed images and SUV data in concordance.
3D Breast Tumor Modeling from MRI
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!