The largest database of trusted experimental protocols

A1r point scanning confocal system

Manufactured by Nikon
Sourced in Japan

The Nikon A1R point scanning confocal system is a high-performance microscope designed for advanced imaging applications. It features a point scanning design that enables high-resolution, high-speed, and high-sensitivity imaging. The system incorporates a resonant scanner for fast image acquisition and a galvanometer scanner for precise positioning. It is capable of capturing detailed three-dimensional images with exceptional clarity and resolution.

Automatically generated - may contain errors

3 protocols using a1r point scanning confocal system

1

Multi-Modal Microscopy Imaging Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
Images were acquired using a Nikon wide-field epifluorescence microscope, Nikon A1R confocal, and Yokogawa W1 spinning disk confocal. All microscopes were run using Nikon Elements software. The widefield microscope was an inverted Nikon Eclipse TiE system with a 120BOOST LED-based illumination system and equipped with a Photometrics HQ2 CoolSnap camera and motorized XY stage. The Nikon A1R point scanning confocal system was run on an inverted Nikon Eclipse TiE base with 405-, 488-, 568- and 647nm excitation laser lines and four detectors: two GaAsP and two Alkali PMTs with a motorized XY stage. The Yokogawa W1 spinning disk confocal has an inverted Nikon Eclipse TiE base and 100mW 405-, 490-, 561-, and 640nm lasers, equipped with an Andor iXon 888 Life EMCCD camera linked with a 10-position filter wheel and a motorized XY stage. The spinning disk system was enclosed in an environmental chamber with temperature and local [CO2] control.
+ Open protocol
+ Expand
2

Multi-Modal Microscopy Imaging Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
Images were acquired using a Nikon wide-field epifluorescence microscope, Nikon A1R confocal, and Yokogawa W1 spinning disk confocal. All microscopes were run using Nikon Elements software. The widefield microscope was an inverted Nikon Eclipse TiE system with a 120BOOST LED-based illumination system and equipped with a Photometrics HQ2 CoolSnap camera and motorized XY stage. The Nikon A1R point scanning confocal system was run on an inverted Nikon Eclipse TiE base with 405-, 488-, 568- and 647nm excitation laser lines and four detectors: two GaAsP and two Alkali PMTs with a motorized XY stage. The Yokogawa W1 spinning disk confocal has an inverted Nikon Eclipse TiE base and 100mW 405-, 490-, 561-, and 640nm lasers, equipped with an Andor iXon 888 Life EMCCD camera linked with a 10-position filter wheel and a motorized XY stage. The spinning disk system was enclosed in an environmental chamber with temperature and local [CO2] control.
+ Open protocol
+ Expand
3

FRAP Analysis of Tagged Proteins in Candida-Infected Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
FRAP experiments of GFP or RFP-tagged proteins, transiently expressed in RAW-Dectin1 cells, were conducted on an A1R point-scanning confocal system (Nikon Instruments, Japan). For FRAP, Candida-BFP hyphae-infected cells were imaged in HPMI at 37°C. Images were acquired using a 60x/1.4 NA oil objective (Nikon), 1.2-AU pinhole, resonant scanning mode, and 16x line averaging. For a complete 2 min FRAP acquisition at 1.9 fps, after 5 s of initial imaging, a region of interest 3 μm in diameter was bleached for 1.06 s using the 405 laser at 100% power, followed by imaging for fluorescence recovery. Images were exported and analyzed for fluorescence intensity using Volocity software.
After background subtraction, fluorescence intensity units were normalized (see Figure 6 legend) using Microsoft Excel software, and transformed to a 0–1 scale, to correct for differences in bleaching depth and allow for comparison of up to 30 individual FRAP curves per condition. Graphpad Prism software was used to fit the FRAP curves to a single exponential, plotted as fractional recovery over time.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!