The largest database of trusted experimental protocols

Absorb gt1 system

Manufactured by Abbott
Sourced in United States

The ABSORB GT1 system is a laboratory instrument designed for automated liquid handling and sample preparation. It is capable of performing various liquid handling tasks, such as aspiration, dispension, and mixing of samples, reagents, and buffers. The ABSORB GT1 system is a self-contained, modular platform that can be customized to meet the specific needs of different laboratory applications.

Automatically generated - may contain errors

2 protocols using absorb gt1 system

1

Bioresorbable vs. Durable Drug-Eluting Stents

Check if the same lab product or an alternative is used in the 5 most similar protocols
Implanted EE-BRS devices were the bioresorbable polymer drug-eluting scaffold ABSORB BVS system and the ABSORB GT1 system (Abbott Vascular, Santa Clara, CA, USA). Both devices are composed of poly-L-lactic acid with a strut thickness of 150 µm, covered by a polymer coating of poly-DL-lactic-acid that elutes everolimus. EE-BRS are expected to be completely resorbed within 3 years [12 (link)]. The available scaffold diameters ranged from 2.50 to 3.50 mm with lengths of 8–28 mm. The durable fluoropolymer-coated Xience V EES (Abbott Vascular, Santa Clara, CA, USA) is a cobalt-chromium EES with a strut thickness of 81 µm; it was available in diameters from 2.25 to 4.00 mm with lengths of 8 to 28 mm. The strut thickness, polymer coating, eluted drug and available stent diameters of the platinum-chromium-based Promus Element EES (Boston Scientific, Natick, MA, USA) were the same as for Xience V EES; the available stent length ranged from of 8 to 38 mm.
Angiographic success was defined as a < 50% residual stenosis of the target lesion after successful device implantation, as visually assessed. Procedural success was defined as angiographic success without occurrence of any adverse cardiac event during index hospitalization. In general, dual antiplatelet therapy (DAPT) was prescribed for 12 months after PCI, reflecting contemporary international guideline recommendations.
+ Open protocol
+ Expand
2

Bioresorbable Scaffold Implantation: Everolimus-Eluting Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
The implanted devices are the bioresorbable polymer drug-eluting scaffold ABSORB BVS system and the ABSORB GT1 system (Abbott Vascular, Santa Clara, CA, USA). These devices are composed of poly-l-lactic acid (PLLA) and a polymer coating of poly-dl-lactic-acid (PDLLA), which elutes the active substance everolimus, both of which are completely bioresorbable by the body in a natural 3-year metabolic process [26 (link)]. The choice to implant an EE-BRS was at the discretion of the operator. The vessel size, similar to other trials, ranged from 2.50 till 3.75 mm. Predilatation and postdilatation were strongly recommended. Intracoronary imaging by the means of optical coherence tomography (OCT) or intravascular ultrasound (IVUS) were encouraged but not mandatory. Treatment of bifurcations was not endorsed, however in this case provisional T-stenting technique was advised. Additional implantation with metallic DES was accepted at the destined target lesion as bailout when multiple devices were needed and the appropriate EE-BRS size was unavailable. Angiographic success was defined as a < 30% residual stenosis of the target lesion. All patients were prescribed with DAPT for at least 12 months.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!