The largest database of trusted experimental protocols

Nitrocellulose membrane filters

Manufactured by GE Healthcare

Nitrocellulose membrane filters are a type of lab equipment used for the separation and detection of biomolecules. They are thin, porous membranes made of nitrocellulose material that allow the passage of small molecules while retaining larger ones, such as proteins or nucleic acids. These filters are commonly used in various laboratory techniques, including Western blotting, dot blotting, and immunoassays.

Automatically generated - may contain errors

2 protocols using nitrocellulose membrane filters

1

Western Blot Procedure for Protein Detection

Check if the same lab product or an alternative is used in the 5 most similar protocols
Samples (conditioned media, CM, or cell lysates) were diluted in NuPAGE™ LDS sample buffer (ThermoFisher Scientific, NP0007) and 10% DTT solution 1 M (Applichem, Germany, A3668, 0050), boiled 10 min, loaded in precasted NuPAGE™ Novex™ 10% Bis-Tris Midi Protein Gels (ThermoFisher Scientific, WG1201A), running in NuPAGE MES SDS running buffer (ThermoFisher Scientific, NP0002). The semidry blot was then done onto nitrocellulose membrane filters, 0.22 μm (GE Healthcare, 10600001). The membrane filter was boiled in PBS to increase the detection of low molecular weight (MW) bands. After the incubation with the blocking solution (TBS 0.05% tween, 5% dry milk), primary antibodies were used in TBS 0.05% tween, 2.5% dry milk at the concentration reported in Table I. Following the incubation with secondary peroxidase-coupled anti-mouse or anti-rabbit antibodies, ECL (GE Healthcare, RPN2209) chemiluminescent detection was performed. Quantitative densitometric analysis was performed using ImageJ software (http://imagej.nih.gov/ij/), according to the procedure described in the dedicated section.
+ Open protocol
+ Expand
2

Quantitative Immunodetection of Amyloid-Beta Oligomers

Check if the same lab product or an alternative is used in the 5 most similar protocols
CM and cellular samples were spotted onto nitrocellulose membrane filters 0.22 μm (GE Healthcare, 10600001). After incubation with the blocking solution (TBS 0.05% tween, 10% dry milk or  TBS 0.01% tween, 10% dry milk for anti-oligomer pAbA11) primary antibodies were used in TBS 0.05% tween, 5% dry milk or TBS 0.01% tween, 5% dry milk (for anti-oligomer pAbA11). Purified recombinant anti-AβOs scFvA13 (3.5 μg/ml) was used as described [24 (link)] and immunodetection was performed by anti-V5 tag (Fig. 2e) or by anti-His tag (Fig. 4c), which respectively recognizes the V5 tag or C-terminal 6xHis tag of recombinant scFvA13. After incubation with secondary peroxidase coupled anti-mouse or anti-rabbit antibodies, ECL (GE Healthcare, RPN2209) chemiluminescent detection was performed. Serial dilution curves of cellular samples were preliminarily tested to obtain nonsaturating condition of immunodetection and samples were loaded at 1 μg/spot, whereas 1 μl of CM were spotted. For each specific antibody staining protein loading was normalized to the corresponding Ponceau staining. Blots were scanned and quantitative densitometric analysis was performed by using ImageJ software (http://imagej.nih.gov/ij/), as described in Supplementary Materials and Methods.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!