The largest database of trusted experimental protocols

4 protocols using trip br1

1

Antibody Validation for Protein Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Antibodies against the following proteins and tags were from commercial sources: TRIP-Br1, Enzo Life Science (RRID:AB_2052741); XIAP, R and D Systems (RRID:AB_2215008); AC1 (RRID:AB_2223098), AC5/6 (RRID:AB_2257941), ubiquitin (RRID:AB_778730), GAPDH (RRID:AB_10847862), and β-actin (RRID:AB_626632), Santa Cruz Biotechnology; AC2, Novus Biologicals; V5 (RRID:AB_2556564) and transferrin receptor (RRID: AB_86623), Life Technologies; HA (RRID:AB_2314672), Covance; ubiquitin (linkage-specific K27, K48, and K63), Abcam; Phospho-CREB, Cell Signaling Technology; NeuN, Millipore; and Na-K-ATPase (α subunit) (RRID:AB_258029) and FLAG M2 (antibody RRID:AB_439685 and affinity gel RRID:AB_10704031), Sigma-Aldrich.
+ Open protocol
+ Expand
2

Protein Expression Analysis by Western Blot

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cells were centrifuged, washed in ice-cold PBS buffer, and then lysed in RIPA lysis buffer. The amount of protein was quantified using a protein assay kit (Bio-Rad, Korea). Each sample was subjected to SDS-PAGE and transferred to an Immobilon Transfer Membrane (Millipore, Cat#IPVH00010). The filter was incubated with each corresponding antibody, and immunodetection was carried out using the PowerOpti-ECL Western blotting detection reagent (Bio-Rad). The antibodies used in this study were purchased as follows: Bax (Santa Cruz, sc-20067), cyclophilin A (CypA)(Enzo Life Sciences, BML-SA296), HIF-1α (Cell Signaling, Cat#3716S), HMBG1 (Enzo Life Sciences, ALX-210-964), LC3 (Enzo Life Sciences, ALX-803-082), p62/SQSTM1(Cell Signaling, Cat#5114), RIP3 (Santa Cruz, sc-47368), TRIP-Br1 (Enzo Life Sciences, ALX-804-645), XIAP (Cell Signaling, Cat# 2042) and γ-tubulin (Santa Cruz, sc-7396).
+ Open protocol
+ Expand
3

Colocalization Analysis of Mitochondria and Protein Markers

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cells (5 × 104 cells) were grown on a sterilized confocal dish (Coverglass-Bottom Dish, SPL. Cat#100350) for 24 h. Cells were incubated with Mitotracker (Invitrogen, #M22426) for 30 min and fixed with 4% formaldehyde for 30 min. These cells were then washed with PBS twice and incubated with TRIP-Br1 (Enzo Life Sciences, ALX-804-645) or LC3 (Cell Signaling Technology, #2775S) antibodies overnight at 4°C. These primary antibodies were detected with an anti-mouse IgG H&L (Alexa Fluor® 568) (Abcam, #ab175473) or an anti-rabbit IgG H&L (Alexa Fluor® 488) (Abcam, #ab150077). Nuclei were stained with DAPI (Invitrogen, Cat#P36931) for 10 min after washing with PBS. Colocalization between fluorophores was analyzed using ImageJ software (ver. 1.51u; National Institutes of Health, USA). For lysosomal confocal imaging, cells were incubated with 100 nM Lysotracker (Invitrogen, Cat# L12492) in a phenol-free medium for 90 min. Confocal images were obtained using a Zeiss confocal microscope (Nikon A1 confocal). Image manipulation and merging were performed using appropriate tools of the ImageJ software.
+ Open protocol
+ Expand
4

Immunoblotting Analysis of TRIP-Br Proteins

Check if the same lab product or an alternative is used in the 5 most similar protocols
Immunoblotting analysis was performed as previously described [29 (link)]. Antibodies used in this study were TRIP-Br1 (Enzo Life Sciences, Cat. ALX-804–645), TRIP-Br2 (Abcam, Cat. ab87150), TRIP-Br3 (Abcam, Cat. ab107944), SERTAD3 (Abcam, Cat. ab107728), XIAP (Cell Signaling Technology, Cat. #2042), Bax (SantaCruz Biotechnology, Cat. sc-20067), LC3 (Enzo Life Sciences, Cat. ALX-803–082), LaminB (SantaCruz Biotechnology, Cat. sc-6216), Anti-Flag (Sigma-Aldrich, Cat. F2555), and γ-tubulin (SantaCruz Biotechnology, Cat. sc-7396).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!