The largest database of trusted experimental protocols

Mz symmetry c18 trap column

Manufactured by Waters Corporation

The MZ Symmetry C18 Trap Column is a laboratory equipment product designed for sample preparation and separation purposes. It functions as a solid-phase extraction (SPE) column, utilizing a C18 stationary phase to retain and concentrate analytes of interest from complex sample matrices. The column dimensions and packing material properties are optimized to facilitate efficient sample cleanup and analyte enrichment prior to subsequent analytical procedures.

Automatically generated - may contain errors

2 protocols using mz symmetry c18 trap column

1

Comprehensive Analysis of MSC Secretomes

Check if the same lab product or an alternative is used in the 5 most similar protocols
MSC secretomes from all 12 donors for all treatment conditions (healthy, degenerative, traumatic, baseline, and IL-1β) were analyzed. The samples were collected and measured in two batches of 48 samples (traumatic, degenerative, IL-1β, baseline) and 24 samples (healthy and baseline). In both batches, baseline samples were included to account for differences between batches. For each sample, the protein concentration was measured using the Qubit® Protein Assay Kit (Life Technologies, Switzerland). The samples were then prepared by using a commercial iST Phonix Kit (PreOmics, Germany). Mass spectrometry analysis was performed on a Q-Exactive HF-X mass spectrometer (Thermo Scientific) equipped with a Digital PicoView source (New Objective) and coupled to an M-Class UPLC (Waters). Solvent composition at the two channels was 0.1% formic acid for channel A and 0.1% formic acid, 99.9% acetonitrile for channel B. For each sample, 4 μL of peptides were loaded on a commercial MZ Symmetry C18 Trap Column (100 Å, 5 μm, 180 μm × 20 mm, Waters) followed by nanoEase MZ C18 HSS T3 Column (100 Å, 1.8 μm, 75 μm × 250 mm, Waters). The peptides were eluted at a flow rate of 300 nL/min by a gradient from 8 to 27% B in 82 min, 35% B in 5 min, and 80% B in 1 min. Samples were acquired in a randomized order. Only precursors with intensity above 110,000 were selected for MS/MS.
+ Open protocol
+ Expand
2

Reverse Phase Peptide Separation

Check if the same lab product or an alternative is used in the 5 most similar protocols
For peptide separation by reverse phase chromatography, a Waters ACQUITY UPLC M-Class was used with a 20 mm nanoEase M/Z Symmetry C18 trap column (180 µm inner diameter packed with 5 µm C18 silica particles), and a 25 cm nanoEase M/Z HSS C18 T3 column (75 µm inner diameter and packed with 1.8 µm C18 silica particles), and analytical column. Total separation time was 75 min over a linear gradient from 5 to 35% solvent B (solvent A: 0.1% formic acid in H2O, solvent B: 0.1% formic acid in AcN) with a flow rate of 300 nL/min. Separated peptides were directly applied by ESI into an Orbitrap Q-Exactive HF mass spectrometer (Thermo Fisher Scientific). The mass spectrometry was set up in full MS/data-dependent-MS2 mode. For the full scans, a scan range of 350–1500 m/z at a resolution of 120,000 was used with an automatic gain control (AGC) target at 3 × 10e6 and a maximum injection time of 50 ms. The top 20 most intense ions were isolated with a maximum injection time of 119 ms, fragmented with a NCE of 28 and detected at 60,000 resolution with a scan range of 200–2000 m/z and an AGC target of 1 × 10e5 (fixed first mass 130 m/z).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!