The largest database of trusted experimental protocols

Snap hq ccd camera

Manufactured by Teledyne
Sourced in United Kingdom, Germany

The SNAP-HQ CCD camera is a high-quality imaging solution designed for scientific and industrial applications. It features a high-resolution charge-coupled device (CCD) sensor that captures detailed images with excellent sensitivity and low noise. The camera's core function is to provide accurate and reliable image data for analysis and documentation purposes.

Automatically generated - may contain errors

2 protocols using snap hq ccd camera

1

Total Internal Reflection Fluorescence Microscopy

Check if the same lab product or an alternative is used in the 5 most similar protocols
TIRF illumination (TIRFi) was used for our experiments. The expanded beam of a 488/568 nm argon/krypton multiline laser (20 milliwatts, Laserphysics, Germany) passed through an AOTF laser wavelength selector (VisiTech International, UK) synchronized with a SNAP-HQ CCD camera (Roper Scientific, Germany) under Metafluor software (Universal Imaging, USA) control and was introduced to the coverslip from the high numerical aperture objective lens (Zeiss α-plan FLUAR 100X). Light entered the coverslip and underwent total internal reflection at the glass-cell interface. In our experimental conditions, penetration depth of TIRFi was calculated to be about 90 nm [17 (link), 25 (link)]. In single-wavelength TIRFi experiments (488 nm) the laser beam was filtered via the Zeiss filter set 10 and images were acquired at 20–40 Hz (Zeiss, Switzerland). In dual-wavelength TIRF illumination (488/568 nm), laser beams were combined by a dichroic mirror from the Zeiss filter 24 at 20–40 Hz. The pixel size was 126 nm (at binning 2).
+ Open protocol
+ Expand
2

Alternating EPI-TIRF Imaging for Phaluorin Fluorescence

Check if the same lab product or an alternative is used in the 5 most similar protocols
EPI or TIRF illuminations were used for our experiments. In Bafilomycin A1 experiments, EPI and TIRF illuminations were alternated in real time for whole-cell pHluorin fluorescence (pHF) signal measurements in individual cells, in basal condition and upon stimulation. By imaging with excitation light at 488 nm generated by a 488 nm laser (20 mW; Laserphysics) and by a polychromator illumination system (Visichrome), the pHF signal was recorded at 10 Hz through a 100X objective lens (α-plan FLUAR 100X, 1.45 NA, Zeiss, Germany) and filtered with Zeiss filter set 10 (Zeiss) [19] (link). For TIRF illumination, the expanded beam (488/568 nm argon/krypton multilinelaser, 20 mW) (Laserphysics, USA) was passed through an AOTF laser wavelength selector (VisiTech International) synchronized with a SNAP-HQ CCD camera (Roper Scientific, Germany) under Metafluor software (Universal Imaging, USA) control and was introduced from the high numerical aperture objective lens (α-plan FLUAR 100X, 1.45 NA, Zeiss, Germany). Light entered the coverslips and underwent total internal reflection at the glass-cell interface. In our experimental conditions, penetration depth of TIRF illumination was calculated to be about 90 nm [20] (link). Light was filtered with a beam splitter (Zeiss filter set 10). Images were acquired at 20–40 Hz. Pixel size 126 nm at binning 2.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!