The nanomechanical properties were measured with the Multimode Nanoscope VIII instrument (Bruker) in the “PeakForce QNM in Fluid” mode. “SCANASYST-FLUID+” model cantilever with nominal spring constants of ~0.7 N m−1 and tip radius of ~2 nm was chosen (Bruker) for the measurements. In FD-based AFM, the AFM probe was made to approach to and retract from samples to record a series of FD curves. The “NanoScope Analysis” software was used to process the FD curves. The statistical analysis of the Young’s modulus distribution was evaluated with about 25 FD curves of origami and Cu metallization pattern, and fitted with a Gaussian model.
Multimode nanoscope 8 instrument
The Multimode Nanoscope VIII instrument is a versatile atomic force microscope (AFM) designed for high-resolution imaging and analysis of surfaces at the nanoscale. It provides precise control and measurement of surface topography, mechanical properties, and other characteristics of a wide range of materials and samples.
Lab products found in correlation
4 protocols using multimode nanoscope 8 instrument
Nanomechanical Characterization of Origami and Metal Patterns
The nanomechanical properties were measured with the Multimode Nanoscope VIII instrument (Bruker) in the “PeakForce QNM in Fluid” mode. “SCANASYST-FLUID+” model cantilever with nominal spring constants of ~0.7 N m−1 and tip radius of ~2 nm was chosen (Bruker) for the measurements. In FD-based AFM, the AFM probe was made to approach to and retract from samples to record a series of FD curves. The “NanoScope Analysis” software was used to process the FD curves. The statistical analysis of the Young’s modulus distribution was evaluated with about 25 FD curves of origami and Cu metallization pattern, and fitted with a Gaussian model.
Characterization of GO-AgNPs Morphology
Nanoscale Characterization of BSA/MWCNTs/GA Layer
DNA Origami Ruler Imaging Protocol
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!