The largest database of trusted experimental protocols

Membrane filters

Manufactured by Avantor
Sourced in Germany

Membrane filters are a type of filtration device used to separate and isolate particles, cells, or molecules from a liquid or gas mixture. They are designed to allow the passage of certain components while retaining others based on their size and physical properties. Membrane filters are commonly used in various scientific and industrial applications, such as water purification, sample preparation, and microbial analysis.

Automatically generated - may contain errors

5 protocols using membrane filters

1

Measuring Radioactive Protein Yields

Check if the same lab product or an alternative is used in the 5 most similar protocols
Protein yields of de novo synthesized 14C-leucine labeled Nbs were determined by liquid scintillation counting as described previously (Stech et al., 2012 (link)). In brief, 5 µL aliquots of SN1 or SN2 were precipitated in 3 ml of 10% (v/v) TCA—2% (v/v) casein hydrolysate (Carl Roth GmbH, Karlsruhe, Germany), boiled for 15 min at 80°C and subsequently cooled on ice for at least 30 min. Protein solutions were filtered using a vacuum filtration system (Hoefer, Holliston, United States) and concentrations of 14C-leucine labeled proteins which were retained on the membrane filters (VWR, Darmstadt, Germany) were calculated based on liquid scintillation counting using the Hidex SL600 scintillation counter.
+ Open protocol
+ Expand
2

Phage Isolation and Purification from S. aureus

Check if the same lab product or an alternative is used in the 5 most similar protocols
Phages were released from S. aureus strains by mitomycin C induction (2.5 µg/ml). Lysates were centrifuged at 8,000 × g for 15 min and the supernatants were passed through 0.45 µm and 0.2 µm membrane filters (VWR International GmbH, Darmstadt). Lytic activity of the phages was tested by spotting 1:10 dilution series of each lysate onto a lawn of MRSA CC398 indicator strains. Phages were isolated by twofold recovery of single plaques. High titres of phages were achieved by harvesting overlay agar with confluent lysis. The agar was resuspended in SM buffer (100 mM NaCl, 8 mM MgSO4 7H2O, 50 mM Tris-HCl, pH 7, 5) and stirred for several hours at room temperature. Thereafter, agar and cell debris were removed by centrifugation and filtration as described above. Phages were concentrated by ultracentrifugation and purified using CsCl step gradients (1,35–1,65 g/cm2). To determine phage titers, the softagar overlay method was applied40 .
+ Open protocol
+ Expand
3

Synthesis of Carbon Quantum Dots

Check if the same lab product or an alternative is used in the 5 most similar protocols
Carbon quantum dots were synthesized in a stainless-steel hydrothermal reactor (50 mL volume, 30 bar) (Toption, Shanxi, China) with a Teflon reaction vessel. To the starting material in the amount of 0.5 g (glucose, glucosamine, cellulose and chitosan) 0.5 mL of the hydrochloric acid and 0.1 g of the modifying agent (urea, urotropin) (Sigma-Aldrich, Poznań, Poland) was added. The reactors were placed in oven at 180 °C for 12 h. After the carbonization process suspensions were sonificated using Emmi-20 HC ultrasound bath (EMAG Polska, Juszczyn, Poland) and filtered by using membrane filters (VWR, Gdańsk, Poland) with a 0.22 µm pores diameter. All samples were neutralized by using 5% NaOH solution by using an Elmetron CX-551 pH meter (Elmetron, Zabrze, Poland) and the solutions were dialyzed by using dialysis tubing (MWCO 500–1000 Da) and water (VWR, Gdańsk, Poland) as the purifying agent for 4 days to remove small molecular weight compounds and inorganic ions. Prepared CQDs solutions were diluted for spectroscopic analysis. The reaction parameters and samples composition are given in Table 1.
+ Open protocol
+ Expand
4

Thermal Spring Microbiome Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
Four thermal springs differing in their chemical composition and temperature (Additional file 1: Table S1) were examined in this study, Vřídlo (V, 72.0 °C), Mlýnský (M, 59.3 °C), Sadový starý (S, 46.3 °C), and Štěpánka (P, 18.3 °C). Samples were collected at two time points, in autumn 2018 and spring 2019. A total volume of 25 L of water was collected directly from the constructed pipes into sterile 2 L and 1 L glass bottles (SIMAX, CZ). To control for the asepticity of the collection process, the fallout of possible air contamination was sampled using the same type of 2 L sampling bottle filled with sterile deionized water, which was left open during the whole process of sampling. Collected samples and control bottles were immediately transferred to the laboratory (< 4 h). Cells were filtered onto 0.22 µm membrane filters (VWR, USA), and membrane filters with retained cells from 20 L of water were used for the extraction of metagenomic DNA, whereas filters with retained cells from the 3 L of water were used for the cultivation of microorganisms. The remaining 2 L were used for the enriched cultivation approach.
+ Open protocol
+ Expand
5

Quantifying Cell-Free Protein Yields

Check if the same lab product or an alternative is used in the 5 most similar protocols
Total protein yields of cell-free synthesized, 14C-labeled protein were determined by hot trichloroacetic acid (TCA) precipitation and subsequent liquid scintillation counting (Stech et al., 2012 (link)). In short, 3 µl of the fraction analyzed were mixed with 3 ml 10% TCA (Carl Roth GmbH & Co. KG; Karlsruhe, Germany) with 2% casein hydrolysate (Carl Roth GmbH & Co. KG; Karlsruhe, Germany) and incubated in a water bath at 80°C for 15 min followed by 30 min incubation on ice. The TCA solution was then transferred to membrane filters (VWR International GmbH, Darmstadt, Germany) using a vacuum filtration device (Hoefer, Inc., Holliston, USA). The filters were washed with 5% TCA and dried with acetone. The dry filters were transferred into scintillation vials (Sarstedt AG & Co KG) and incubated in 3 ml scintillation cocktail for 1 h. The samples were then measured using the Hidex 600 SL (Hidex; Turku, Finland). Protein yields were calculated based on the counted disintegrations per minute, the specific activity of 14C-leucine in the cell-free reaction, the molecular weight, and the number of leucines in the protein.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!