The largest database of trusted experimental protocols

7 protocols using trimmer kit

1

RNA-Seq Library Preparation and Sequencing

Check if the same lab product or an alternative is used in the 5 most similar protocols
Total RNA was isolated from each of the fragments from the different treatments described above using TRIzol (Invitrogen) according to manufacturer’s instructions. The quality of all of the RNA was checked using a Bioanalyzer (Agilent) RIN ≥9.5, and pools with the same amount of RNA were then created. The cDNA library was constructed using a Clontech SMARTer PCR cDNA synthesis kit and amplified using the Advantage 2 PCR kit according to the manufacturer's instructions. Subsequently, 2 µg of the amplified cDNA was normalized using the Trimmer kit (Evrogen) following the manufacturer's instructions and purified using the Qiaquick PCR purification kit (Qiagen). The normalized and non-normalized cDNA was sent to Roche for further analysis. Sequencing was performed using a 454 GS-Flx instrument according to the manufacturers' instructions (Roche). In order to obtain the abundant and rare transcripts, the library placed on the 454 plate was divided into two, half containing normalized cDNA, and the other half with non-normalized cDNA. The normalized and non-normalized cDNAs were sheared by sonication to produce short random fragments (300–400 bp) appropriate for 454 sequencing, and oligonucleotide adaptors were then ligated to the fragmented sequences. The 454 GS-Flx running plate was divided for internal comparison of normalized and non-normalized libraries (data not shown).
+ Open protocol
+ Expand
2

cDNA Normalization Protocol for Optimizing Transcriptome Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
cDNA normalization was performed from total RNAs with MINT and TRIMMER kits from Evrogen according to the manufacturer’s instruction, except that the number of PCR cycles for material amplification was adapted to our material. First, full length double stranded (ds) cDNA were synthetized from 2 μg of total RNA using the MINT kit [55 (link)]. First strand was synthetized from a fusion primer containing an oligo (dT) stretch to anneal RNA polyA tails. A poly (dC) stretch was incorporated at the end of the first strand, and used for priming the synthesis of the second strand. Full length (ds) cDNA were subsequently amplified by PCR, purified on Qiaquick columns (Qiagen) and checked for quality and yield before normalization. Normalization was done with the TRIMMER kit (Evrogen) which is based on DSN technology [56 (link)]. The method involves denaturation-reassociation of cDNA, Duplex Specific Nuclease (DSN) degradation of the ds-fraction corresponding to abundant transcripts and PCR amplification of the single strand (ss) DNA fraction. We started from 600 ng (ds) cDNA for normalization and after denaturation, incubated samples at 68°C for five hours for renaturation. After degradation of (ds) complexes by DSN, we made two runs of PCR amplification for optimal recovery. Normalized cDNA was then purified on Qiaquick columns (Qiagen) and yield was measured by spectrophotometry.
+ Open protocol
+ Expand
3

Normalized EST Library Generation

Check if the same lab product or an alternative is used in the 5 most similar protocols
The same strain was used to generate a normalized EST library. The fungus was pre-cultivated in 50 ml of 2% malt broth (20 g l-1 malt extract; Difco) for 14 days at 20 °C under constant shaking. Then, the mycelium was homogenized with a blender for 30 s and 5 ml of the homogenized mycelium was transferred to new 50 ml of 2% malt broth (20 g l-1 malt extract; Hefe Schweiz). After 48 h the actively growing mycelium was harvested and immediately frozen in liquid nitrogen. Total RNA was isolated from approx. 75 mg fresh mycelium using the RNeasy plant mini kit (Qiagen, Hombrechtikon, Switzerland). Full-length cDNA was synthesized using the MINT kit (evrogen, Moscow, Russia) with a degenerated poly-T primer (5′-AAGCAGTGGTATCAACGCAGAGTAC (T)4G(T)9C(T)10VN-3′) during the first strand cDNA synthesis [95 (link)] and polTM1 (5′-AAGCAGTGGTATCAACGCAGAGTACTTTTGTCTTTTGTTCTGTTTCTTTTVN-3′) for the generation of dsDNA. The cDNA was normalized using the TRIMMER kit (evrogen) and the library was sequenced on the 454. Resulting reads were filtered for chimeras and then a whole transcriptome assembly was performed in newbler 2.3 with a minimum overlap of 50 bases and 98% sequence similarity.
+ Open protocol
+ Expand
4

de novo Transcriptome Sequencing with 454-Titanium

Check if the same lab product or an alternative is used in the 5 most similar protocols
Preparation for mRNA sequencing libraries followed the protocol of de novo transcriptome sequencing using 454-Titanium technology, which was developed by Mikhail V. Matz’s lab at The University of Texas at Austin [32 (link)]. The first stranded cDNA was normalized by duplex-specific nuclease in the Trimmer Kit from Evrogen (EA001, EA002, EA003). The libraries were sequenced by Titanium run on a Genome Sequencer FLX machine (Roche/454, Branford, CT) in the DNA Sequencing Center at Brigham Young University.
+ Open protocol
+ Expand
5

RNA Isolation and Normalization for Transcriptome

Check if the same lab product or an alternative is used in the 5 most similar protocols
Equal amounts of extracted RNA from different seed maturation stages were pooled and used for cDNA library construction. To purify mRNA from 5 μg total RNA, the mRNA-Only Eukaryotic mRNA Isolation Kit (Epicentre) was used by applying exonuclease digestion followed by LiCl precipitation. One μg mRNA was used for the synthesis of the first-strand cDNA by the Mint-Universal cDNA Synthesis Kit (Evrogen). The Trimmer Kit (Evrogen) was used for normalization reaction using 800 ng amplified cDNA, which was re-amplified by 18 cycles.
+ Open protocol
+ Expand
6

Transcriptomic Analysis of Seed Maturation

Check if the same lab product or an alternative is used in the 5 most similar protocols
Equal amounts of extracted RNA from different seed maturation stages were pooled and used for cDNA library construction. To purify mRNA from 5 µg total RNA, the mRNA-Only Eukaryotic mRNA Isolation Kit (Epicentre) was used by applying exonuclease digestion followed by LiCl precipitation. One µg mRNA was used for the synthesis of the first-strand cDNA by the Mint-Universal cDNA Synthesis Kit (Evrogen). The Trimmer Kit (Evrogen) was used for normalization reaction using 800 ng amplified cDNA, which was re-amplified by 18 cycles.
+ Open protocol
+ Expand
7

Extraction and Analysis of Total RNA from Jatropha curcas Seed Maturation Stages

Check if the same lab product or an alternative is used in the 5 most similar protocols
Total RNA was extracted from six stages of seed maturation of J. curcas using plant RNA puri cation reagents (Invitrogen) according to the supplier's instructions. The quality and concentration of total RNAs were determined using NanoVue Spectrophotometer (GE Healthcare Life Sciences) and gel electrophoresis. All RNA samples showing A260/280 ratios between 2.0 and 2.15 were selected and analyzed for RNA integrity using an Agilent 2100 Bioanalyzer (Agilent Technologies). RNA samples with an integrity number above 7.0 were used for further analyses. cDNA synthesis for sequencing Equal amounts of extracted RNA from different seed maturation stages were pooled and used for cDNA library construction. To purify mRNA from 5 µg total RNA, the mRNA-Only Eukaryotic mRNA Isolation Kit (Epicentre) was used by applying exonuclease digestion followed by LiCl precipitation. One µg mRNA was used for the synthesis of the rst-strand cDNA by the Mint-Universal cDNA Synthesis Kit (Evrogen).
The Trimmer Kit (Evrogen) was used for normalization reaction using 800 ng ampli ed cDNA, which was re-ampli ed by 18 cycles.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!