The largest database of trusted experimental protocols

Fb410 10

Manufactured by Thorlabs

The FB410-10 is a fiber-coupled LED light source from Thorlabs. It provides a broadband optical output with a center wavelength of 410 nm. The device features a single-mode fiber output with a 10 µm core diameter.

Automatically generated - may contain errors

6 protocols using fb410 10

1

Photometric Calcium Imaging Methodology

Check if the same lab product or an alternative is used in the 5 most similar protocols
Photometry was performed as described in detail previously (Kim et al., 2016 (link)). Briefly, we used a 405 nm LED and a 470 nm LED (Thorlabs, M405F1 and M470F1) for the Ca2+-dependent and Ca2+independent isosbestic control measurements. The two LEDs were bandpass filtered (Thorlabs, FB410-10 and FB470-10) and then combined with a 425 nm longpass dichroic mirror (Thorlabs, DMLP425R) and coupled into the microscope using a 495 nm longpass dichroic mirror (Semrock, FF495-Di02−25 × 36). Mice were connected with a branched patch cord (400 μm, Doric Lenses, Quebec, Canada) using a zirconia sleeve to the optical system. The signal was captured at 20 Hz (alternating 405 nm LED and 470 nm LED). To correct for signal artifacts of a nonbiological origin (i.e., photobleaching and movement artifacts), custom Matlab scripts leveraged the reference signal (405 nm), unaffected by calcium saturation, to isolate and remove these effects from the calcium signal (470 nm).
+ Open protocol
+ Expand
2

GCaMP6 Fluorescence Emission Measurements

Check if the same lab product or an alternative is used in the 5 most similar protocols
For measurements of GCaMP6 emission, we used both a 405-nm LED and a 470-nm LED (Thorlabs, M405F1 and M470F1) as excitation sources for the Ca2+-dependent and Ca2+-independent isosbestic control measurements, respectively. The two LEDs were filtered with 410-10–nm and 470-10–nm bandpass filters (Thorlabs, FB410-10 and FB470-10), fiber coupled as described above, combined using a 425-nm longpass dichroic mirror (Thorlabs, DMLP425R) and coupled into the microscope using a 495-nm longpass dichroic mirror (Semrock, FF495-Di02-25 ×36).
+ Open protocol
+ Expand
3

Calcium Imaging Photometry Technique

Check if the same lab product or an alternative is used in the 5 most similar protocols
Photometry was performed as described in detail previously (Kim et al., 2016 (link)). Briefly, we used a 405 nm LED and a 470 nm LED (Thorlabs, M405F1 and M470F1) for the Ca2+-dependent and Ca2+-independent isosbestic control measurements. The two LEDs were band-pass filtered (Thorlabs, FB410-10 and FB470-10) and then combined with a 425 nm long-pass dichroic mirror (Thorlabs, DMLP425R) and coupled into the microscope using a 495 nm long-pass dichroic mirror (Semrock, FF495-Di02-25 3 36). Mice were connected with a branched patch cord (400 mm, Doric Lenses, QC, Canada) using a zirconia sleeve to the optical system. The signal was captured at 20 Hz (alternating 405 nm LED and 470 nm LED). To correct for signal artifacts of a nonbiological origin (i.e., photobleaching and movement artifacts), custom MATLAB scripts leveraged the reference signal (405 nm), unaffected by calcium saturation, to isolate and remove these effects from the calcium signal (470 nm).
+ Open protocol
+ Expand
4

PUF Optical Excitation and Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
As easily accessible common light sources for optical excitation, we used ultraviolet, blue, and green light-emitting diodes (LEDs) with emission wavelengths of 415 nm (FWHM = 14 nm), 470 nm (FWHM  =  25  nm), and 530 nm (FWHM = 33 nm) purchased from Thorlabs Inc. (Newton, NJ, USA). Bandpass filters of 410, 470, and 530 nm (FB410-10, FB470-10, and FB530-10; Thorlabs Inc.) were placed between the light source and the PUF device. The optical power was kept at 1, 3, and 10 μW mm−2 for 415-nm, 470-nm, and 530-nm LEDs at the surface of PUFs. To image the PUFs, we used a charge-coupled device (CCD) camera (Princeton Instruments PIXIS 1024B, Trenton, NJ, USA) with a conventional zoom lens (MVL7000, Navitar, Rochester, NY, USA) via a liquid crystal tunable filter with a FWHM of 7 nm (VariSpec VIS-07-20; PerkinElmer, Inc., Waltham, MA, USA). As a result, the following set of excitation and emission bands was selected such that λex = 415 nm and λem = 460 nm; λex = 470 and λem = 510 nm; λex = 470 and λem = 560 nm; λex = 530 and λem = 630 nm, optimized for eCFP, eGFP, eYFP, and mKate silk, respectively.
+ Open protocol
+ Expand
5

In Vivo Fiber Photometry for Calcium Imaging

Check if the same lab product or an alternative is used in the 5 most similar protocols
Photometry was performed as described in detail previously54 (link). Briefly, we used a 405-nm LED and a 470-nm LED (Thorlabs, M405F1 and M470F1) for the Ca2+-dependent and Ca2+-independent isosbestic control measurements. The two LEDs were band-pass filtered (Thorlabs, FB410-10 and FB470-10) and then combined with a 425-nm long-pass dichroic mirror (Thorlabs, DMLP425R) and coupled into the microscope using a 495-nm long-pass dichroic mirror (Semrock, FF495-Di02-25 3 36). Mice were connected with a branched patch cord (400 mm, Doric Lenses, Quebec, Canada) using a zirconia sleeve to the optical system. The signal was captured at 20 Hz (alternating 405-nm LED and 470-nm LED). To correct for signal artifacts of a non-biological origin (i.e., photo-bleaching and movement artifacts), custom Matlab scripts leveraged the reference signal (405-nm), unaffected by calcium saturation, to isolate and remove these effects from the calcium signal (470-nm). Correlation of df/F activity and threat proximity during EPM test and Rat assay were calculated as previously described26 (link).
+ Open protocol
+ Expand
6

Photometric Calcium Imaging Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
Photometry was performed as described in detail previously (Kim et al., 2016 (link)). Briefly, we used a 405-nm LED and a 470-nm LED (Thorlabs, M405F1 and M470F1) for the Ca2+-dependent and Ca2+independent isosbestic control measurements. The two LEDs were band-pass filtered (Thorlabs, FB410–10 and FB470–10) and then combined with a 425-nm long-pass dichroic mirror (Thorlabs, DMLP425R) and coupled into the microscope using a 495-nm long-pass dichroic mirror (Semrock, FF495-Di02–25 ×36). Mice were connected with a branched patch cord (400 μm, Doric Lenses, Quebec, Canada) using a zirconia sleeve to the optical system. The signal was captured at 20 Hz (alternating 405-nm LED and 470-nm LED). To correct for signal artifacts of a non biological origin (i.e. photo-bleaching and movement artifacts), custom Matlab scripts leveraged the reference signal (405-nm), unaffected by calcium saturation, to isolate and remove these effects from the calcium signal (470-nm).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!