The samples were pre-filtered to remove residue and subsequently filtered through a 0.45 μm nitrocellulose membrane (Sartorius, Germany) using a vacuum system. The membranes were then suspended in broth and plated onto m-Aeromonas selective media (Biolife, Italia Srl) supplemented with ampicillin (10 mg/l) [25 (link)]. Yellow colonies on the agar plates due to dextrin fermentation, after 18–24 hours of incubation at 30°C were presumed to be Aeromonas species and tested with oxidase reagent (bioMérieux, France), checked for growth on MacConkey agar and 6.5% (w/v) NaCl-Luria Bertani (LB) broth. Oxidase-positive colonies growing on MacConkey agar but not in 6.5% NaCl-LB broth were further confirmed to genus level by the API 20E system (bioMérieux, France), then grown in LB broth, cryopreserved in 20% (v/v) glycerol at -80°C and maintained in LB agar and broth as working cultures.
Oxidase reagent
The Oxidase reagent is a laboratory product used to perform the oxidase test. The oxidase test is a biochemical assay used to detect the presence of the cytochrome c oxidase enzyme, which is indicative of certain bacterial species. The reagent allows for the rapid identification of oxidase-positive bacteria.
Lab products found in correlation
12 protocols using oxidase reagent
Isolation and Characterization of Aeromonas from Freshwater Lakes
The samples were pre-filtered to remove residue and subsequently filtered through a 0.45 μm nitrocellulose membrane (Sartorius, Germany) using a vacuum system. The membranes were then suspended in broth and plated onto m-Aeromonas selective media (Biolife, Italia Srl) supplemented with ampicillin (10 mg/l) [25 (link)]. Yellow colonies on the agar plates due to dextrin fermentation, after 18–24 hours of incubation at 30°C were presumed to be Aeromonas species and tested with oxidase reagent (bioMérieux, France), checked for growth on MacConkey agar and 6.5% (w/v) NaCl-Luria Bertani (LB) broth. Oxidase-positive colonies growing on MacConkey agar but not in 6.5% NaCl-LB broth were further confirmed to genus level by the API 20E system (bioMérieux, France), then grown in LB broth, cryopreserved in 20% (v/v) glycerol at -80°C and maintained in LB agar and broth as working cultures.
Physiological Characterization of Bacteria
Comprehensive Bacterial Characterization Protocol
Characterization of Bacterial Strain Motility
Gram-staining and biochemical analysis
Gram-staining and biochemical analysis
Gram Stain and Antimicrobial Susceptibility
Phenotypic Characterization of Phaeovulum Strains
Colorimetric assay of cytochrome c oxidase
Enzyme and Carbohydrate Utilization Assays
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!