The largest database of trusted experimental protocols

Multiscreen vacuum manifold 96 well

Manufactured by Merck Group
Sourced in Sweden

The MultiScreen™ Vacuum Manifold 96-well is a laboratory equipment designed for vacuum-based filtration and separation of samples in 96-well microplates. It facilitates the efficient processing of multiple samples simultaneously.

Automatically generated - may contain errors

6 protocols using multiscreen vacuum manifold 96 well

1

Quinpirole-Raclopride Binding Assay

Check if the same lab product or an alternative is used in the 5 most similar protocols
Competition experiments of quinpirole (0.3 nM-3 mM) versus the D2-likeR antagonist [3H]-raclopride (2 nM; specific activity 78.1 Ci/mmol, PerkinElmer Life Sciences, Stockholm, Sweden) were carried out by membrane (20 μg per well) incubation at 30 °C for 90 min. Non-specific binding was defined by radioligand binding in the presence of 10 μM (+)-butaclamol (Sigma-Aldrich, Stockholm, Sweden). The incubation was terminated by rapid filtration through hydrophilic (LPB) Durapore ®Membrane (Millipore, Stockholm, Sweden) using a MultiScreen™ Vacuum Manifold 96-well (Millipore Corp, Bedford, MA), followed by five washes (200 μl per wash) with ice-cold washing buffer (50 mM Tris–HCl pH 7.4). The filters were dried, 4 ml of scintillation cocktail was added, and the bound ligand was determined after 12 h by liquid scintillation spectrometry.
+ Open protocol
+ Expand
2

Competitive Binding Assay for D2-like Receptors

Check if the same lab product or an alternative is used in the 5 most similar protocols
Competition experiments of quinpirole (0.3 nM–3 mM) versus the D2-likeR antagonist [3H]-raclopride (2 nM; specific activity 78.1 Ci/mmol, PerkinElmer Life Sciences, Stockholm, Sweden) were carried out by membrane (20 μg per well) incubation at 30 °C for 90 min, in the presence or absence of 100 nM of the A2AR agonist CGS 21680. Nonspecific binding was defined by radioligand binding in the presence of 10 μM (+)-butaclamol (Sigma-Aldrich, Stockholm, Sweden). The incubation was terminated by rapid filtration through Hydrophilic (LPB) Durapore ®Membrane (Millipore, Stockholm, Sweden) using a MultiScreen™ Vacuum Manifold 96-well (Millipore Corp, Bedford, MA), followed by five washes (200 μl per wash) with ice-cold washing buffer (50 mM Tris-HCl pH 7.4). The filters were dried, 4 ml of scintillation cocktail was added, and the bound ligand was determined after 12 h by liquid scintillation spectrometry.
+ Open protocol
+ Expand
3

Saturation Binding of [3H]-Raclopride in HEK Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
Saturation binding experiments with the D2-likeR antagonist [3H]-raclopride (specific activity 82.8 Ci/mmol, PerkinElmer Life Sciences, Sweden) were performed in membrane preparations from single and cotransfected HEK cells (100 μg protein/ml) incubated with increasing concentrations of [3H]-raclopride (ranging from 0.1 nM to 12 nM) in 250 μl of incubation buffer (50 mM Tris–HCl, 100 mM NaCl, 7 mM MgCl2, 1 mM EDTA, 0.05% BSA and 1 mM dithiothreitol) for 60 min at 30 °C in the presence or absence of cocaine (1 nM, 10 nM, and 100 nM) and the high affinity sigma 1 receptor antagonist PD144418 [26 (link)]. Non-specific binding was defined by radioligand binding in the presence of 10 μM (+) butaclamol (Sigma Aldrich, Sweden). The incubation was terminated by rapid filtration Whatman GF/B filters (Millipore Corp, Sweden) using a MultiScreen™ Vacuum Manifold 96-well followed by three washes (~ 250 μl per wash) with ice-cold washing buffer (50 mM Tris–HCl pH 7.4). The filters were dried, 5 ml of scintillation cocktail was added, and the bound ligand was determined after 12 h by liquid scintillation spectrometry.
+ Open protocol
+ Expand
4

Quinpirole Displacement of [3H]-Raclopride Binding

Check if the same lab product or an alternative is used in the 5 most similar protocols
[3H]-raclopride binding was displaced by quinpirole to determine the proportion of receptors in the high-affinity state (RH), the high-affinity (Ki, High), and low-affinity (Ki, Low) values. Nucleus accumbens membrane preparations (60 μg protein/mL) were incubated with increasing concentrations of quinpirole (0.01 nM to 1 mM) and 2 nM [3H]-raclopride (75 Ci/mmol, Novandi Chemistry AB, Sweden) in 250 μL of incubation buffer (50 mM Tris-HCl, 100 mM NaCl, 7 mM MgCl2, 1 mM EDTA, 0.05% BSA, 1 mM DTT) and 0.3 IU/mL adenosine deaminase (EC 3.5.4.4, Sigma-Aldrich) for 90 min at 30 °C in the presence or absence of 100 nM of the A2AR agonist CGS 21680. Nonspecific binding was defined by radioligand binding in the presence of 100 μM (+)-butaclamol (Sigma-Aldrich, Sweden). The incubation was terminated by rapid filtration Whatman GF/B filters (Millipore Corp, Sweden) using a MultiScreenTM Vacuum Manifold 96-well followed by five washes (250 μL per wash) with ice-cold washing buffer (50 mM Tris-HCl pH 7.4). The filters were dried, 5 mL of scintillation cocktail was added, and the amount of bound ligand was determined after 12 h by liquid scintillation spectrometry.
+ Open protocol
+ Expand
5

Quinpirole Binding Assay for D2 Receptors

Check if the same lab product or an alternative is used in the 5 most similar protocols
[3H]-raclopride binding was displaced by quinpirole to determine the proportion of receptors in the high-affinity state (RH), the high-affinity value (Ki, High), and the low-affinity (Ki, Low) value. Ventral striatum membrane preparations (60 μg protein/ml) were incubated with increasing concentrations of quinpirole (0.01 nM to 1 mM) and 2 nM [3H]-raclopride (75 Ci/mmol, Novandi Chemistry AB, Sweden) in 250 μl of incubation buffer (50 mM Tris-HCl, 100 mM NaCl, 7 mM MgCl2, 1 mM EDTA, 0.05% BSA, 1 mM DTT) and 0.3 IU/ml adenosine deaminase (EC 3.5.4.4, Sigma-Aldrich). The incubation took place for 90 min at 30°C in the presence or absence of 100 nM of the A2AR agonist CGS-21680. Non-specific binding was defined by radioligand binding in the presence of 100 μM (+)-butaclamol (Sigma-Aldrich, Sweden). The incubation was terminated by rapid filtration using Whatman GF/B filters (Millipore Corp, Sweden) and a MultiScreenTM Vacuum Manifold 96-well, followed by five washes (250 μl per wash) with ice-cold washing buffer (50 mM Tris-HCl pH 7.4). The filters were dried, 5 ml of scintillation cocktail was added, and the amount of bound ligand was determined after 12 h by liquid scintillation spectrometry.
+ Open protocol
+ Expand
6

Quantifying Dopamine Receptor Affinities

Check if the same lab product or an alternative is used in the 5 most similar protocols
[3H]-Raclopride binding was displaced by quinpirole to determine the proportion of receptors in the high affinity state (RH), the high affinity (Ki,High), and low affinity (Ki,Low) values for the agonist binding sites from competition curves in HEK cells expressing either A2AR/3xHA-D2R, A2AR/3xHA-D2R(Tyr192Ala5.41x42), or A2AR/3xHA-D2R(Leu207Ala5.56/Lys211Ala5.60). Membrane preparations (60 μg protein/ml) were incubated with increasing concentrations of quinpirole (0.001 nM to 1 μM) and 2 nM [3H]-raclopride (75 Ci/mmol, Novandi Chemistry AB, Sweden) in 250 μl of incubation buffer (50 mM Tris-HCl, 100 mM NaCl, 7 mM MgCl2, 1 mM EDTA, 0.05% BSA, 1 mM DTT) and 0.3 IU/ml adenosine deaminase (EC 3.5.4.4, Sigma-Aldrich) for 90 min at 30°C in the presence or absence of 100 nM of the A2AR agonist CGS-21680. Non-specific binding was defined by radioligand binding in the presence of 10 μM (+) butaclamol (Sigma-Aldrich, Sweden). The incubation was terminated by rapid filtration Whatman GF/B filters (Millipore Corp, Sweden) using a MultiScreenTM Vacuum Manifold 96-well followed by three washes (∼250 μl per wash) with ice-cold washing buffer (50 mM Tris-HCl pH 7.4). The filters were dried, 5 ml of scintillation cocktail was added, and the amount of bound ligand was determined after 12 h by liquid scintillation spectrometry.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!