The largest database of trusted experimental protocols

Z2 axioimager

Manufactured by MetaSystems

The Z2 Axioimager is a high-performance microscopy platform designed for advanced imaging applications. It features a modular and configurable architecture, allowing users to customize the system to meet their specific needs. The core function of the Z2 Axioimager is to provide a versatile and reliable platform for a wide range of microscopy techniques, including fluorescence, brightfield, and phase contrast imaging.

Automatically generated - may contain errors

2 protocols using z2 axioimager

1

Multiplexed Imaging of Alzheimer's Disease Tissue

Check if the same lab product or an alternative is used in the 5 most similar protocols
Using a protocol adapted from Maric et al. [36 (link)] and Murray et al. [37 (link)], paraffin-embedded tissue microarray sections of AD and normal middle temporal gyrus were processed as above. Imaging was carried out with an automated fluorescence microscope (Zeiss Z2 Axioimager) equipped with MetaSystems VSlide slide scanner (MetaSystems) running MetaFer (V 3.12.1) with a 20 × air objective (0.9 NA). This microscope is equipped with 6 custom excitation/dichroic/emission filter sets optimised for spectral separation of compatible fluorophores as previously described (Maric et al. [36 (link)]). Antibodies were then stripped from sections with the addition of 5X NewBlot™ Nitro Stripping Buffer (Li-Cor, NE, USA) for 10 min at room temperature. Sections were then washed in PBS, epitope retrieval performed where necessary, and a subsequent round of immunostaining and imaging performed as above. This was completed over four rounds. Alignment of images from all four rounds was performed using a custom Python script [38 (link)]. We confirmed the effectiveness of stripping at removing previous antibodies in Additional file 1: Figure S5.
+ Open protocol
+ Expand
2

Automated Imaging and Quantification of α-Synuclein

Check if the same lab product or an alternative is used in the 5 most similar protocols
Sections were imaged using an automated fluorescence microscope; Zeiss Z2 Axioimager equipped with MetaSystems VSlide slide scanner (MetaSystems) running MetaFer (V 3.12.1) coupled with MetaXpress using a 20x magnification objective lens (0.9 NA). Images were stitched using MetaCyte software. Following image capture, the total section scan was viewed using VSViewer (V 1.1.106) (MetaSystems) software. The AON regions were delineated using several antibodies (Fig. 1c). Once the AON regions were identified, this process was applied to sequential sections. Cells with presumed intracellular α-syn were manually counted and marked for their location in the OFB using VSViewer (V 1.1.106) software. All cells with presumed intracellular α-syn were reimaged with a confocal microscope to confirm whether the α-syn was intracellular (Supplementary Fig. 1).
Confocal images were acquired using a FV1000 confocal microscope (Olympus, Japan) with a 40x magnification oil immersion lens (1.00 NA), 60 x magnification oil immersion lens (1.35 NA) or 100 x magnification oil immersion lens (1.40 NA) in a Z-series using a step size of 0.5 µm. Orthogonal projections with maximum intensity Z-projections were generated using ImageJ software.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!