The largest database of trusted experimental protocols

6 protocols using zymo dna clean and concentrator 5

1

Genome-wide Off-target Evaluation Using GUIDE-seq and AAV-seq

Check if the same lab product or an alternative is used in the 5 most similar protocols
Genomic DNA was isolated from the targeted HSPCs (~2 × 105 to 5 × 105) 10 days for GUIDE-seq and 18 days for AAV-seq after targeting using a GenFind V3 Reagent Kit according to the manufacturer’s protocol (Beckman Coulter). Genomic DNA (100 ng) was fragmented using Tn5 transposase (IIlumina) in 20 μl of reaction at 55°C for 7 min. Tagmented DNA fragments were purified by using Zymo DNA Clean and Concentrator-5 according to the manufacturer’s protocol (Zymo Research). To verify the tagmentation (~0.5 to 1.5 kb), 1/10 Zymo elutes were loaded on 1.2% agarose gel (fig. S8). Preparations of GUIDE-seq and AAV-seq libraries followed previous protocols (15 (link), 42 (link)) with specific primer sets (table S3). Last, the GUIDE-seq and AAV-seq libraries were loaded onto Illumina MiniSeq for deep sequencing.
+ Open protocol
+ Expand
2

Identification of Mouse Gut Microbiome

Check if the same lab product or an alternative is used in the 5 most similar protocols
We streaked the glycerol stocks of mouse ileum contents onto MRS agar plates. One or two colony morphologies were present on nearly all plates: lowly abundant bright cream, round colonies present on most plates, and abundant flatter, dull white colonies present on all plates. We determined the species identity of these colony morphologies by full length 16S rRNA gene sequencing using primers 27F (f.c. 1 nM) and 1391R (f.c. 1 nM) (Turner et al., 1999 (link)), 10 μl of Classic++ Hot Start Taq DNA Polymerase Master Mix (Tonbo Biosciences, CA, USA), and a small amount of a single bacterial colony in a 25 μl reaction. PCR conditions were 94°C for 3 min, 38 cycles of 94°C for 45 s, 50°C for 1 min, and 72°C for 1.5 min, followed by a final extension at 72°C for 10 min. We purified PCRs using Zymo DNA Clean and Concentrator−5 (Zymo Research, CA, USA) and submitted samples to Cornell University Institute of Biotechnology Sanger sequencing facility. Returned sequences were assembled using Sequencher version 5.4.6 (DNA sequence analysis software, Gene Codes Corporation, Ann Arbor, MI, USA, http://www.genecodes.com) and aligned against National Center for Biotechnology Institute’s nr database.
+ Open protocol
+ Expand
3

Generating Constructs with Varying 5' UTR

Check if the same lab product or an alternative is used in the 5 most similar protocols
The first step to generating the constructs used here was to create a Puc118-NanoLuc construct without a 5′ UTR (Additional file 2). Using In-fusion cloning the 5′ UTR and firefly luciferase enzyme from the EBA175-Firefly plasmid used previously [5 (link), 10 (link)] were replaced with the NanoLuc Luciferase (Promega) coding sequence. The plasmid generated, called P16, consists of: Puc118 backbone with a T7 promotor proceeding the NanoLuc Luciferase protein coding sequence followed by the 3′ UTR from PF_HRP2.
To create the varying length 5′ UTR constructs, the 5′ UTR sequences of PF3D7_1411400 and PF3D7_1428300 were amplified from P. falciparum W2 strain gDNA using Kapa 2G Robust DNA polymerase (Roche KK5024) with primers containing overhangs with the T7 promoter (forward primer) or NanoLuc (reverse primer). The P16 plasmid was amplified using Phusion polymerase (NEB M0530S) for the backbone (forward primer: ATGGTCTTCACACTCGAAGATTTC, reverse primer: CCTATAGTGAGTCGTATTAGAATTCG). The inserts and backbone were purified using a Zymo DNA Clean and Concentrator-5 (Zymo Research D4013). In-fusion reactions were performed per the In-fusion Cloning Kit (Takara 638918) instructions and reactions were transformed into Stellar Competent Cells (Takara 636766).
+ Open protocol
+ Expand
4

Efficient mRNA Synthesis and Purification

Check if the same lab product or an alternative is used in the 5 most similar protocols
All mRNA generating plasmids were digested with PvuII-HF (NEB R[Δ4]151 L) and ApaLI-HF (NEB R0507L) at 37 °C for 3 h. After digestion, templates were run on a 1% agarose gel to confirm cutting and the reactions were purified with Zymo DNA Clean and Concentrator-5 (Zymo Research D4013). 1ug of linearized template was used in a 100 uL T7 RNA Polymerase (purified in house) reaction that was incubated at 37 °C for 3 h. After T7 reactions were complete, 15uL TurboDNAse (ThermoFisher Scientific AM2238) was added, and reactions were incubated at 37 °C for 15 min. The RNA was then purified using a Zymo RNA Clean and Concentrator-25 Kit (Zymo Research R1017). Eluted RNA was measured using the Qubit RNA HS Assay Kit (Thermo Fisher Scientific Q32852) then capped following the protocol for the Vaccinia Capping System (NEB M2080S) and purified one last time using Zymo RNA Clean and Concentrator-5 (Zymo Research R1013). Capped RNA concentrations were measured using the Qubit RNA HS Assay Kit (Thermo Fisher Scientific Q32852). Final RNA was diluted to 0.25pmoles/ul for use in the in vitro translation assays.
For the comparing capped versus uncapped mRNA, uncapped RNA was incubated for 5 min at 65 °C to match the treatment of capped RNAs. The same RNA that was used in the vaccinia capping reaction was directly compared to the post-cap RNA.
+ Open protocol
+ Expand
5

Quantifying Mutated KRAS in cfDNA

Check if the same lab product or an alternative is used in the 5 most similar protocols
For the cfDNA elutions (see previous section) that were split, the elution half intended for ddPCR was first cleaned using Zymo DNA Clean and Concentrator-5 (Zymo Research, Irvine, CA, USA) using standard procedures and eluted twice in 10 μL of Zymo DNA Elution buffer. The elutions were then combined and DNA concentration was measured using the Invitrogen Qubit 3.0 Fluorometer and stored at − 80 °C.
To calculate the genomic copies of mutated KRAS present in cfDNA extracted from plasma samples, we used the BioRad ddPCR KRAS G12/G13 Screening Kit (which targets 7 different KRAS mutations G12A, G12C, G12D, G12R, G12S, G12V, G13D) (BioRad product number: 1863506) (BioRad, Hercules, CA, USA), using standard instructions with a C1000 Touch Thermo Cycler and the QX200 Droplet Generator and Reader System and an annealing temperature of 60 °C. 5 μL of a given sample elution was used as input for each reaction and at least two reactions for each sample were performed until the entire sample was used. Droplets were read on a QX200 Droplet Reader and data was analyzed using QuantaSoft software.
+ Open protocol
+ Expand
6

Molecular Techniques for Yeast Genomics

Check if the same lab product or an alternative is used in the 5 most similar protocols
All chemicals were purchased from Sigma unless otherwise stated. All restriction enzymes, DNA ligases, and DNA polymerases used for cloning and PCR were purchased from New England Biolabs (NEB) unless otherwise stated. Plasmid minipreps, PCR purifications, and gel extractions were done using the Zymo Zyppy Plasmid Miniprep Kit, and Zymo DNA Clean and Concentrator 5. Genomic DNA from Y. lipolytica was extracted using the E.Z.N.A. Yeast DNA kit (Omega Biotek). All oligonucleotides and gBlocks® were purchased from IDTDNA. Xylose assays were performed using the D-Xylose Assay Kit (Megazyme). Glucose assays were done using glucose oxidase and horseradish peroxidase enzymes purchased from Sigma.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!