The largest database of trusted experimental protocols

Excelsior xt27

Manufactured by Stryker
Sourced in United States

The Excelsior XT27 is a lab equipment product designed for general laboratory use. It serves as a centrifuge, providing a core function of separating components of a liquid mixture based on their density differences.

Automatically generated - may contain errors

4 protocols using excelsior xt27

1

Intracranial Aneurysm Treatment with p64 Device

Check if the same lab product or an alternative is used in the 5 most similar protocols
In each case, patients had given written informed consent at least 24 hours before the procedure after being informed about the intended treatment and potential alternatives.
All treatments were performed under general anesthesia using bi-plane digital subtraction angiography (DSA) units (Axiom Artis, Siemens, Erlangen, Germany). A 6F short sheath with a 6F guiding catheter was used via right-sided femoral access as the standard approach. In cases with severe vessel elongation and the need for an intermediate catheter, an 8F right femoral approach was used. Heparin was administered intravenously immediately after groin puncture (usually 3,000 IU unfractionated heparin IV). All flushing solutions, including the guiding catheters and microcatheters, were heparinized (5,000 IU unfractionated heparin/l).
The p64 was deployed via an Excelsior XT27 (Stryker Neurovascular, Kalamazoo, MI, USA) microcatheter. The diameter and length of the p64 were chosen based on intraprocedural 2D and 3D calibrated measurements of the diameter of the parent artery, the distance between the proximal and distal landing zones, the discrepancy of the diameter between the landing zones, and the aneurysm neck size taking into account potential device foreshortening. Once satisfactory deployment and positioning were achieved, the p64 was mechanically detached.
+ Open protocol
+ Expand
2

Endovascular Flow Diversion Procedures

Check if the same lab product or an alternative is used in the 5 most similar protocols
All treatments were performed in patients under general anesthesia with a 6 F guiding catheter or 8 F guiding catheter with a 5 F intermediate catheter in cases of severe vessel elongation, with guidance provided by bi-plane digital subtraction angiography (DSA) (Axiom Artis, Siemens, Erlangen, Germany; Azurion, Philips, Eindhoven). The standard approach included femoral access using short sheaths, predominantly on the right side. All FDs were deployed via Trevo Pro 18, Excelsior XT27 (Stryker Neurovascular, Kalamazoo, MI, United States), Headway 21 (MicroVention Terumo, Tokyo, Japan) or Prowler Select Plus (Cerenovus, Johnson & Johnson, New Brunswick, NJ, United States) microcatheters.
All patients undergoing FD procedures received intravenous administration of 3,000–5,000 IU heparin. Heparinized irrigation solutions were used in all catheters (5,000 IU unfractionated heparin/L). FD implantation was performed by the two most experienced interventionalists at each center.
+ Open protocol
+ Expand
3

Endovascular Approach to Supra-Aortic Vessels

Check if the same lab product or an alternative is used in the 5 most similar protocols
All procedures were performed with the animals under general anaesthesia with acepromazine (0.2 mg/kg, intramuscularly), Telazol (5 mg/kg, intravenously), and maintenance with 2% isoflurane. The right common femoral artery was surgically exposed and a 6-Fr introducer sheath inserted. Using a 5-Fr vertebral catheter and standard 0.035-in. guidewire, angiography of the common carotid arteries (CCAs), external carotid arteries (ECAs), and subclavian arteries (SAs) was performed. After full heparinisation and activated clotting time 2–2.5 times the normal value, a 0.027-in. Marksman microcatheter (Medtronic, Dublin, Ireland) or Excelsior XT 27 (Stryker, Kalamazoo, USA) with 0.014-in. microwire was used to access the supra-aortic vessels.
+ Open protocol
+ Expand
4

Silicone Vascular Model Study of Stent Deployment

Check if the same lab product or an alternative is used in the 5 most similar protocols
The silicone vascular model was connected by a closed circuit and infused with warm saline by using a peristaltic pump (Ecoline VC-280; Ismatec, Wertheim-Mondfeld, Germany). 11 The tip of the 6-Fr guiding catheter was placed right below the proximal stump of the silicone aneurysmal model. The stent was delivered through a 0.027-inch-sized microcatheter (Excelsior XT-27; Stryker Neurovascular, Fremont, CA, USA). A push-and-pull technique was used to place the stents under fluoroscopic guidance (Axiom Artis; Siemens Healthcare). The operator was blinded to the stent type during deployment of the stent to avoid bias caused by the delivery technique. The aneurysmal model was primed with 10% saline-diluted iodine contrast media (Visipaque 270; GE Healthcare, Princeton, NJ, USA), and then volume-rendering and maximum intensity projection (MIP) images were obtained on the Leonardo workstation. For MIP, the contrast was adjusted so that the stent mesh could be differentiated from the vessel lumen and aneurysmal sac that were filled with diluted contrast media (Fig. 2C). Each of the six stents (three pairs) was placed in each of six silicone aneurysmal models; thus, 12 sets of data for each type of stent were acquired.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!