The largest database of trusted experimental protocols

Optosplit image splitter

Manufactured by Cairn Research
Sourced in United Kingdom

The Optosplit image splitter is a versatile optical device designed to split a single image into multiple channels. It enables the simultaneous capture of different spectral or polarization components from a single source. The Optosplit splits the input image using dichroic mirrors or polarizing beamsplitters, producing separate output images that can be captured by individual cameras or detectors.

Automatically generated - may contain errors

2 protocols using optosplit image splitter

1

TIRFM Imaging of NMDA and Cav1 Receptors

Check if the same lab product or an alternative is used in the 5 most similar protocols
TIRFM used an Olympus IX81 inverted microscope equipped with an oil immersion 100× PlanApo objective with a numerical aperture of 1.45. The microscope was equipped with a LG-TIRFM (TIRF Labs, Cary, NC) system coupled to an Argon-Helium laser with three lines; 488, 543, and 633 nm as previously described68 (link). The 488 nm line was used to excite GFP (NMDA receptors) and the 543 to excite Cav1-mCherry. We introduced an Optosplit image splitter (Cairn Research, Kent, UK) before the camera (Ixon Andor) to collect simultaneous images from GFP (525 nm) and mCherry (580 nm).
+ Open protocol
+ Expand
2

Dual-color Imaging of HER2 and HER3 Interaction

Check if the same lab product or an alternative is used in the 5 most similar protocols
CHO cells were plated at 1.8 × 105 cells/dish on 1% BSA-coated 35 mm glass-bottom dishes (Matek) and grown for 24 h before transfection with HA-HER2-WT and HA-HER3-WT full-length plasmids using Viafect (Promega), according to the manufacturer's protocol. Forty-eight hours post-transfection, cells were serum-starved for 1 h, then treated for 1 h with 30 μM AC3573 compound or 0.3% DMSO in serum-free medium. Cells were then labelled with 0.5 nM HER2-Alexa488 Affibody and 15 nM HER3-CF640R Affibody or 14 nM NRG-CF640R for 7 min at 37°C and washed with serum-free medium before prompt imaging. Single-molecule images were acquired using an Axiovert 200M microscope with TIRF illuminator (Zeiss, U.K.), with a 100× oil-immersion objective (α-Plan-Fluar, NA = 1.45; Zeiss, U.K.) and an EMCCD (iXon X3; Andor, U.K.). The 488 nm and 642 nm lines of a LightHub laser combiner (Omicron Laserage GmbH) were used to illuminate the sample and an Optosplit Image Splitter (Cairn Research) was used to separate the image into its spectral components as described previously [48 (link)]. The field of view of each channel for single-molecule imaging was 80 × 30 µm. All single-molecule time series data were analysed using the multidimensional analysis software described previously [49 (link)]. Calculation of colocalisation and τON were performed as previously described [50 (link)].
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!