The largest database of trusted experimental protocols

Type e scanner head

Manufactured by Bruker

The Type E scanner head is a precision optical measurement device designed for high-resolution scanning applications. It features a compact and robust construction, enabling accurate and reliable data collection. The core function of the Type E scanner head is to precisely control and position the scanning mechanism for capturing detailed measurements and images.

Automatically generated - may contain errors

2 protocols using type e scanner head

1

Nanomaterial Characterization by TEM and AFM

Check if the same lab product or an alternative is used in the 5 most similar protocols
The sizes and morphologies of nanomaterials were characterized using transmission electron microscopy (TEM) and atomic force microscopy (AFM). TEM samples of AlbiVax or a mixture of AlbiVax and HSA were prepared by depositing samples (10 µL) onto a carbon-coated copper grid. For AFM, samples (10 µL) were casted on freshly peeled mica substrate, followed by drying, rinsing, and dehumidifying. AFM was carried out in tapping mode in air on a PicoForce Multimode AFM (Bruker, CA) equipped with a Nanoscope® V controller, a type E scanner head, and a sharpened TESP-SS (Bruker, CA) AFM cantilever. AFM images were then analyzed by Nanoscope Software (version 7.3–8.15, Bruker, CA).
+ Open protocol
+ Expand
2

Nanomaterial Characterization by SEM, AFM, and DLS

Check if the same lab product or an alternative is used in the 5 most similar protocols
The sizes and morphologies of nanomaterials were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM samples were prepared by depositing the above-prepared samples onto conductive glass, following by drying, washing with double-distilled H2O (diH2O) and further drying. Samples were coated with Au (5 nm) by spray, and observed on an S-4800 scanning electron microscope. For AFM of hNVs, samples (10 μL) were casted on freshly peeled mica substrate, followed by drying, rinsing, and dehumidifying. AFM was carried out in tapping-mode in air on a PicoForce Multimode AFM (Bruker, CA) equipped with a Nanoscope® V controller, a type E scanner head, and an OTESPA (Bruker, CA) AFM cantilever. AFM images were then analyzed by Nanoscope Software (ver. 7.3–8.15, Bruker, CA). The sizes of hNVs suspended in Dulbecco’s PBS were also characterized using dynamic light scattering (DLS) on a Nanoparticle Analyzer (HORIBA Scientific, Tokyo, Japan). Bright field or fluorescence images of fluorophore-labeled hNVs were taken on a Zeiss LSM 780 confocal microscope (Chesterfield, VA).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!