The largest database of trusted experimental protocols

Gcms qp 1000 ex mass spectrometer

Manufactured by Elementar
Sourced in Japan, Germany

The GCMS-QP 1000 EX is a gas chromatography-mass spectrometry (GC-MS) system manufactured by Elementar. It is designed for the analysis and identification of a wide range of organic compounds. The GCMS-QP 1000 EX combines gas chromatography for sample separation with mass spectrometry for compound detection and identification.

Automatically generated - may contain errors

3 protocols using gcms qp 1000 ex mass spectrometer

1

Microwave-Assisted Synthesis of Formamidine Derivatives

Check if the same lab product or an alternative is used in the 5 most similar protocols
All melting points were measured on a Gallenkamp melting point apparatus. The infrared spectra were recorded in potassium bromide discs on a Pye Unicam SP 3–300 and Shimadzu FT IR 8101 PC infrared spectrophotometers. The NMR spectra were recorded in deuterated chloroform (CDCl3) or dimethyl sulfoxide (DMSO-d6). On a Varian Mercury VXR-300 NMR spectrometer. Chemical shifts were related to that of the solvent. Mass spectra were recorded on a Shimadzu GCMS-QP1000 EX mass spectrometer at 70 eV. Elemental analyses were recorded on a Elementar-Vario EL automatic analyzer at the Micro-analytical Centre of Cairo University, Giza, Egypt. Formamidine 3 is prepared according to our pervious reported work [39 (link)] (Scheme 6). The Microwave irradiation was carried out on a CEM mars machine. CEM has several vessel types that are designed for their ovens: Closed-system vessels including the HP-500 (500 psig material design pressure and 260 °C), pictured below, have liners are composed of PFA and are ideal for many types of samples. HP-500 Plus vessels are ideal for routine digestion applications. Process up to 14 high-pressure vessels per run with temperatures up to 260 °C or pressures up to 500 psi (Scheme 7).
+ Open protocol
+ Expand
2

Characterization of Organic Compounds

Check if the same lab product or an alternative is used in the 5 most similar protocols
Melting points (M.P.) were measured on a Gallenkamp melting point apparatus in open glass capillaries and are uncorrected. IR spectra were measured as KBr pellets on a Perking Elmer FT 1000 spectrophotometer (Madison, WI, USA). The NMR spectra were recorded on a Varian Mercury Jeol-400 NMR spectrometer (Tokyo, Japan). 1H-NMR (400 MHz) and 13C-NMR (100 MHz) were run in (DMSO-d6). Chemical shifts (δ) are referred in ppm and coupling constants J are given in Hz. Mass spectra were recorded on a Shimadzu GCMS-QP 1000 EX mass spectrometer (Tokyo, Japan) at 70 eV. Elemental analysis was carried out on an Elementar Vario EL analyzer (Vernon Hills, IL, USA). Sample Availability: Samples of the compounds 110 are available from the authors.
+ Open protocol
+ Expand
3

Analytical Techniques for Chemical Compounds

Check if the same lab product or an alternative is used in the 5 most similar protocols
All melting points were measured on a Gallenkamp Melting point apparatus and are uncorrected. The IR spectra were recorded on a Shimadzu FT-IR 8101 PC infrared spectrophotometer (Shimadzu, Tokyo, Japan) using KBr disks. The NMR spectra were preserved on a Varian Mercury VX-400 NMR spectrometer (Varian, Palo Alto, CA, USA). 1H NMR spectra were run at 400 MHz and 13C NMR spectra were run at 75.46 MHz in deuterated chloroform (CDCl3) or dimethyl sulfoxide (DMSO-d6) as specified in individual compound characterizations. Chemical shifts are given in parts per million and were referenced to those of the solvents. Mass spectra were recorded on a Shimadzu GCMS-QP 1000 EX mass spectrometer at 70 eV. Elemental analyses were registered on an Elementar-Vario EL (Germany) automatic analyzer.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!