The largest database of trusted experimental protocols

Ge locus ultra micro ct

Manufactured by GE Healthcare
Sourced in Canada

The GE Locus Ultra Micro-CT is a high-resolution imaging system designed for non-destructive 3D analysis of small samples. It uses X-ray technology to capture detailed volumetric images of the internal structure of the sample. The core function of the Locus Ultra is to provide researchers and scientists with accurate and precise imaging data for various applications.

Automatically generated - may contain errors

2 protocols using ge locus ultra micro ct

1

Micro-CT Imaging of Mouse Skeletal Structure

Check if the same lab product or an alternative is used in the 5 most similar protocols
Formalin-fixed bones were imaged using a Faxitron MX-20 digital x-ray system with a 24kV, 4-s exposure time for 2D analysis. For whole-body micro-CT imaging, formalin-fixed mouse skeletons were placed in a GE Locus Ultra Micro-CT (GE Medical Systems) and subjected to a 16-s Anatomical Scan Protocol (total of 680 images) at 80 kV, 70 mA, using a 0.15-mm Cu Filter, to achieve ∼150-µm resolution. The same machine was also used for live-mouse imaging at acquisition parameters 80 kV, 50 mA; 16-s anatomical scan; 154-µm isotropic voxels (total of 680 slices) and 3D rendered using Siemens Inveon. For high-resolution micro-CT imaging, fixed mouse legs were immobilized on 1.25% agarose. Specimens were scanned in 360° rotation using a Siemens Inveon Micro-CT high-resolution scanner (Siemens Medical Systems) with the x-ray source at 80 kVp and 0.5 μA. 3D micro-CT data were reconstructed at 13.5-µm resolution. Raw data processing was performed using ImageJ software (National Institutes of Health), and 3D isosurfaces were rendered using Microview software (GE Healthcare). Bone length was measured digitally with ImageJ.
+ Open protocol
+ Expand
2

Longitudinal Lung Imaging and Volumetry

Check if the same lab product or an alternative is used in the 5 most similar protocols
At Day 1, 7, 14, 21, 28 after lung transplantation, mice were lightly anesthetized by isoflurane inhalation and microcomputer tomography (micro-CT) was taken using GE Locus Ultra Micro CT (GE Healthcare, London, Canada) with 4 s anatomical scans to cover the whole lung [31 (link)]. The allograft appearance on CT scan was assigned a grade based on the amount of consolidation: 0 = clear, 1 = minimal consolidation, 2 = mild consolidation, 3 = moderate consolidation, 4 = severe consolidation, 5 = complete consolidation (where the lung cannot be distinguished from the surrounding chest wall). The images where the outline of the lungs could be reliably defined were used for further volumetric analyses. The obtained images were analyzed using MicroView 2.2 software (GE Healthcare) to measure 3D lung volume, using the following approach: The outlines of each lung were traced from approximately 10 sections, from the apex to the basal portion of the lung region. The software generated a 3D region of interest by interpolating between each manually drawn region of interest, reconstructing a 3D volume containing the lung. The graft lung volume was then calculated by measuring the volume of this region of interest [31 (link)].
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!