The largest database of trusted experimental protocols

Waters symmetry c18 3.5 μm column

Manufactured by Waters Corporation

The Waters Symmetry C18 3.5 μm column is a reverse-phase high-performance liquid chromatography (HPLC) column designed for general analytical applications. The column features a 3.5 μm particle size and a C18 stationary phase, providing efficient separation of a wide range of analytes.

Automatically generated - may contain errors

Lab products found in correlation

2 protocols using waters symmetry c18 3.5 μm column

1

Enzymatic Biosynthesis of Olivetolic Acid

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 4

These assays made use of the recombinant enzyme malonyl CoA synthetase (MCS) to produce malonyl CoA. Activity assays were performed in 20 mM HEPES buffer (pH 7.0) in the presence of 5 mM DTT, 0.2 mM hexanoyl CoA, 2.5 mM MgCl2, 0.5 mM ATP, 0.2 mM coenzyme A, 8 mM sodium malonate, 9 μCsPKS and 11 μg malonyl CoA synthetase (MCS) with and without 16 μg of CsOAS. The total volume of the reactions was 100 μL. Reaction mixtures were incubated at 20° C. for 90 minutes with shaking. Products were extracted with ethyl acetate, dried by vacuum and resuspended in 60 μL of 70% water/30% acetonitrile. The products were analyzed by liquid chromatography-mass spectrometry (LC-MS) on a Waters Alliance system with a Waters Symmetry C18 3.5 μm column (2.1×100 mm) using 70% solvent A (90% water, 10% acetonitrile, 0.05% formic acid) and 30% solvent B (acetonitrile+0.05% formic acid) as the elution solvent. The results of the assays of recombinant proteins are shown in FIG. 3. These results shown in FIG. 3A show that CsPKS forms the two pyrones pentyldiacetic lactone (PDAL) and hexanoyltriacetic lactone (HTAL), and olivetol (OL) but not olivetolic acid. Reactions containing both CsPKS and CsOAS, shown in FIG. 3B, yield olivetolic acid (OA) in addition to the other products.

+ Open protocol
+ Expand
2

Enzymatic Synthesis of Olivetolic Acid

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 4

These assays made use of the recombinant enzyme malonyl CoA synthetase (MCS) to produce malonyl CoA. Activity assays were performed in 20 mM HEPES buffer (pH 7.0) in the presence of 5 mM DTT, 0.2 mM hexanoyl CoA, 2.5 mM MgCl2, 0.5 mM ATP, 0.2 mM coenzyme A, 8 mM sodium malonate, 9 μg CsPKS and 11 μg malonyl CoA synthetase (MCS) with and without 16 μg of CsOAS. The total volume of the reactions was 100 μL. Reaction mixtures were incubated at 20° C. for 90 minutes with shaking. Products were extracted with ethyl acetate, dried by vacuum and resuspended in 60 μL of 70% water/30% acetonitrile. The products were analyzed by liquid chromatography-mass spectrometry (LC-MS) on a Waters Alliance system with a Waters Symmetry C18 3.5 μm column (2.1×100 mm) using 70% solvent A (90% water, 10% acetonitrile, 0.05% formic acid) and 30% solvent B (acetonitrile+0.05% formic acid) as the elution solvent. The results of the assays of recombinant proteins are shown in FIG. 3. These results shown in FIG. 3A show that CsPKS forms the two pyrones pentyldiacetic lactone (PDAL) and hexanoyltriacetic lactone (HTAL), and olivetol (OL) but not olivetolic acid. Reactions containing both CsPKS and CsOAS, shown in FIG. 3B, yield olivetolic acid (OA) in addition to the other products.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!