The largest database of trusted experimental protocols

Magnetom symphony 1.5 tesla system

Manufactured by Siemens

The Magnetom Symphony 1.5 Tesla system is a magnetic resonance imaging (MRI) device manufactured by Siemens. It is designed to provide high-quality imaging capabilities for various medical applications. The system utilizes a 1.5 Tesla superconducting magnet to generate a strong magnetic field, which is a core component for obtaining detailed images of the human body.

Automatically generated - may contain errors

Lab products found in correlation

5 protocols using magnetom symphony 1.5 tesla system

1

MRI Study of Extended-Release Tablet

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 8

An open-label, single-treatment, single-period, magnetic resonance imaging (MRI) study of Tablet 5 (CD/LD—60 mg/240 mg extended release tablet containing black iron oxide as MRI-contrasting agent) was conducted using Siemens Magnetom Symphony 1.5 Tesla system. The study was conducted in healthy adult subjects under fed conditions.

Abdominal MRI scans of stomach and intestine of the subjects were performed to see the presence of the tablet in the subjects at 8, 10, 12, 16, and 24 hours (±30 minutes) post-dose period. The tablets were visible as black spots/holes in the stomach due to the presence of black iron oxide. FIG. 12 shows post-dose MRI scans of stomach and intestine of one of the subject consuming the dosage form. FIG. 12 shows that the black spot spreads in the entire stomach at 24 hours, indicating the tablet falls apart at some time between 16 hours and 24 hours post-dose.

+ Open protocol
+ Expand
2

MRI Evaluation of Extended Release Tablet with Iron Oxide

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 8

An open-label, single-treatment, single-period, magnetic resonance imaging (MRI) study of Tablet 5 (CD/LD—60 mg/240 mg extended release tablet containing black iron oxide as MRI-contrasting agent) was conducted using Siemens Magnetom Symphony 1.5 Tesla system. The study was conducted in healthy adult subjects under fed conditions. Abdominal MRI scans of stomach and intestine of the subjects were performed to see the presence of the tablet in the subjects at 8, 10, 12, 16, and 24 hours (±30 minutes) post-dose period. The tablets were visible as black spots/holes in the stomach due to the presence of black iron oxide. FIG. 12 shows post-dose MRI scans of stomach and intestine of one of the subject consuming the dosage form. FIG. 12 shows that the black spot spreads in the entire stomach at 24 hours, indicating the tablet falls apart at some time between 16 hours and 24 hours post-dose.

+ Open protocol
+ Expand
3

MRI Study of Extended-Release Tablet with Iron Oxide

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 8

An open-label, single-treatment, single-period, magnetic resonance imaging (MRI) study of Tablet 5 (CD/LD-60 mg/240 mg extended release tablet containing black iron oxide as MRI-contrasting agent) was conducted using Siemens Magnetom Symphony 1.5 Tesla system. The study was conducted in healthy adult subjects under fed conditions. Abdominal MRI scans of stomach and intestine of the subjects were performed to see the presence of the tablet in the subjects at 8, 10, 12, 16, and 24 hours (±30 minutes) post-dose period. The tablets were visible as black spots/holes in the stomach due to the presence of black iron oxide. FIG. 12 shows post-dose MRI scans of stomach and intestine of one of the subject consuming the dosage form. FIG. 12 shows that the black spot spreads in the entire stomach at 24 hours, indicating the tablet falls apart at some time between 16 hours and 24 hours post-dose.

+ Open protocol
+ Expand
4

MRI Visualization of Extended-Release Tablet in Stomach

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 8

An open-label, single-treatment, single-period, magnetic resonance imaging (MRI) study of Tablet 5 (CD/LD—60 mg/240 mg extended release tablet containing black iron oxide as MRI-contrasting agent) was conducted using Siemens Magnetom Symphony 1.5 Tesla system. The study was conducted in healthy adult subjects under fed conditions. Abdominal MRI scans of stomach and intestine of the subjects were performed to see the presence of the tablet in the subjects at 8, 10, 12, 16, and 24 hours (±30 minutes) post-dose period. The tablets were visible as black spots/holes in the stomach due to the presence of black iron oxide. FIG. 12 shows post-dose MRI scans of stomach and intestine of one of the subject consuming the dosage form. FIG. 12 shows that the black spot spreads in the entire stomach at 24 hours, indicating the tablet falls apart at some time between 16 hours and 24 hours post-dose.

+ Open protocol
+ Expand
5

MRI Imaging of Extended-Release Tablet

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 8

An open-label, single-treatment, single-period, magnetic resonance imaging (MRI) study of Tablet 5 (CD/LD—60 mg/240 mg extended release tablet containing black iron oxide as MRI-contrasting agent) was conducted using Siemens Magnetom Symphony 1.5 Tesla system. The study was conducted in healthy adult subjects under fed conditions. Abdominal MRI scans of stomach and intestine of the subjects were performed to see the presence of the tablet in the subjects at 8, 10, 12, 16, and 24 hours (±30 minutes) post-dose period. The tablets were visible as black spots/holes in the stomach due to the presence of black iron oxide. FIG. 12 shows post-dose MRI scans of stomach and intestine of one of the subject consuming the dosage form. FIG. 12 shows that the black spot spreads in the entire stomach at 24 hours, indicating the tablet falls apart at some time between 16 hours and 24 hours post-dose.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!