The largest database of trusted experimental protocols

Stbl2 e coli host

Manufactured by Thermo Fisher Scientific

Stbl2™ E. coli host is a laboratory strain of Escherichia coli bacteria designed for cloning and plasmid propagation. It is genotypically characterized by the presence of recA and endA mutations that improve plasmid stability and yield.

Automatically generated - may contain errors

Lab products found in correlation

4 protocols using stbl2 e coli host

1

Optimizing Bacterial Transformation of Toxic Plasmids

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 9

Rearranged plasmids were obtained with the commonly-used DH5□ E. coli lab strain. In contrast, transformations using the Invitrogen Stbl2™ E. coli host yielded slow-growing full-length mutant toxin recombinants after three days of growth at 30° C. on LB chloramphenicol (25 μg/ml) plates. Lower cloning efficiencies were obtained with related Stbl3™ and Stbl4™ E. coli strains, although these lines were found to be stable for plasmid maintenance. Transformants were subsequently propagated in agar or in liquid culture under chloramphenicol selection at 30° C. The use of LB (Miller's) media was also found to improve the recovery and growth of transformants compared with animal-free tryptone-soy based media.

+ Open protocol
+ Expand
2

Efficient Cloning of Toxic Mutants

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 9

Rearranged plasmids were obtained with the commonly-used DH5α E. coli lab strain. In contrast, transformations using the Invitrogen Stbl2™ E. coli host yielded slow-growing full-length mutant toxin recombinants after three days of growth at 30° C. on LB chloramphenicol (25 μg/ml) plates. Lower cloning efficiencies were obtained with related Stbl3™ and Stbl4™ E. coli strains, although these lines were found to be stable for plasmid maintenance. Transformants were subsequently propagated in agar or in liquid culture under chloramphenicol selection at 30° C. The use of LB (Miller's) media was also found to improve the recovery and growth of transformants compared with animal-free tryptone-soy based media.

+ Open protocol
+ Expand
3

Optimized Bacterial Transformation for Toxic Plasmids

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 9

Rearranged plasmids were obtained with the commonly-used DH5□ E. coli lab strain. In contrast, transformations using the Invitrogen Stbl2™ E. coli host yielded slow-growing full-length mutant toxin recombinants after three days of growth at 30° C. on LB chloramphenicol (25 μg/ml) plates. Lower cloning efficiencies were obtained with related Stbl3™ and Stbl4™ E. coli strains, although these lines were found to be stable for plasmid maintenance. Transformants were subsequently propagated in agar or in liquid culture under chloramphenicol selection at 30° C. The use of LB (Miller's) media was also found to improve the recovery and growth of transformants compared with animal-free tryptone-soy based media.

+ Open protocol
+ Expand
4

Rearranged Plasmid Production in E. coli

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 9

Rearranged plasmids were obtained with the commonly-used DH5□ E. coli lab strain. In contrast, transformations using the Invitrogen Stbl2™ E. coli host yielded slow-growing full-length mutant toxin recombinants after three days of growth at 30° C. on LB chloramphenicol (25 μg/ml) plates. Lower cloning efficiencies were obtained with related Stbl3™ and Stbl4™ E. coli strains, although these lines were found to be stable for plasmid maintenance. Transformants were subsequently propagated in agar or in liquid culture under chloramphenicol selection at 30° C. The use of LB (Miller's) media was also found to improve the recovery and growth of transformants compared with animal-free tryptone-soy based media.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!