The largest database of trusted experimental protocols

Bx5 fluorescence microscope imaging system

Manufactured by Olympus
Sourced in United States

The BX5 is a fluorescence microscope imaging system from Olympus. It is designed for high-resolution imaging of fluorescently labeled samples. The system includes an advanced optical system, high-sensitivity camera, and software for image capture and analysis.

Automatically generated - may contain errors

2 protocols using bx5 fluorescence microscope imaging system

1

Mitochondrial Membrane Potential Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
A mitochondrial membrane potential (MMP) assay kit with 5,5′,6,6′-tetrachloro-1,1′,3,3′ tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) [C2006; Beyotime Institute of Biotechnology, Shanghai, China] was used to detect MMP. JC-1 accumulates to form J-aggregates and emits red fluorescence (Cy3, excitation/emission wave length of 525/590 nm) in mitochondria with higher membrane potentials, while JC-1 monomers emit green fluorescence (fluorescein isothiocyanate [FITC], excitation/emission wave length of 490/530 nm) in mitochondria with lower membrane potentials. A decrease of the ratio (red: green) was thus interpreted as a decrease in MMP [33 (link)]. For this assay, different groups of 0.1 mL of purified mitochondria (protein concentration 0.2 mg/mL) were incubated with 0.9 mL of 0.2X JC-1 staining working solution. A time scan was performed directly using a fluorescence microplate reader (Gemini EM Microplate Reader, Molecular Devices, Sunnyvale, CA, USA) with an excitation/emission wave length of 485/590 nm, and observed under an Olympus BX5 fluorescence microscope imaging system (Olympus America, Melville, NY, USA).
+ Open protocol
+ Expand
2

Detecting Apoptotic Cells using TUNEL Assay

Check if the same lab product or an alternative is used in the 5 most similar protocols
The terminal transferase biotinylated-dUTP nick end labeling (TUNEL) method was performed to label cells undergoing apoptosis following the manufacturer’s instructions (Roche Applied Science, Penzberg, Germany). Briefly, the brain sections were incubated in a permeabilization solution and then incubated with a TUNEL reaction mixture. Finally, the sections were incubated with 10 μg/mL Hoechst 33342 in a humidified dark chamber. After the TUNEL method, the sections were stained with DAPI (4,6-diamidino-2-phenylindole) and mounted with Fluoromount (SouthernBiotech, Birmingham, AL, USA), and FITC-labeled apoptotic cells were then imaged on an Olympus BX5 fluorescence microscope imaging system (Olympus America, Melville, NY, USA). The number of apoptotic neural cells per view was counted using microscopy at × 400 magnification.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!