The largest database of trusted experimental protocols

Prairie technologies ultima multiphoton microscopy system

Manufactured by Bruker

The Prairie Technologies Ultima Multiphoton Microscopy System is a high-performance imaging device designed for advanced microscopy applications. It utilizes multiphoton excitation technology to enable deep tissue imaging with minimal photodamage. The system features a modular and configurable design to accommodate a variety of sample types and experimental requirements.

Automatically generated - may contain errors

Lab products found in correlation

2 protocols using prairie technologies ultima multiphoton microscopy system

1

Two-Photon Calcium Imaging Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
2-photon Ca2+ imaging experiments were performed either with a Prairie Technologies Ultima Multiphoton Microscopy System (Bruker) or with a Nikon A1R MP 2-photon scanning microscopy (Nikon), or with a Scientifica SliceScope 2-photon microscope system (Scientifica). The imaging laser’s wavelength was set at 820 nm and fluorescence was collected by a 60X objective (NA 1.0; Nikon), a 25X objective (NA 1.10; Nikon), or a 20X objective (NA 1.0; Olympus). Green (Fluo-4, 200 µM) and red (Alexa594 25 µM or TMR 100 µM) fluorescence were collected via 490–560/575/585–630 nm or 500–550/560/570–655 nm, or 500–550/565/590–650 nm filter cubes. The pre-chirped imaging laser (Chameleon Vision II, Coherent) intensity was ~9–12 mW (Prairie), ~8 mW (Nikon) and ~7 mW (Scientifica) at the surface of the specimen. Ca2+ signals in line-scan and frame-scan mode were acquired at a frequency of 100–300 Hz and 30 Hz (resonant scanner), respectively. Line-scan profiles illustrated in the figures were smoothed using a sliding average of five (Figures 3 and 10E) or nine points (Figures 4, 6, 9 and 10C). Pictured line-scan images were sequentially filtered with two orthogonal 1-D gaussian filters (width of 2 pixel in time, horizontal and 1 pixel in space, vertical, Figures 3, 6, 9 and 10). The ∆F/F frame-scan shown in Figure 5B (right) was filtered with a 2-D gaussian filter (width=2 pixels).
+ Open protocol
+ Expand
2

2-Photon Glutamate Uncaging in Hippocampal Slices

Check if the same lab product or an alternative is used in the 5 most similar protocols
2-photon glutamate uncaging experiments were performed with Prairie Technologies Ultima Multiphoton Microscopy System (Bruker) equipped with two tunable Ti:sapphire lasers and two scan heads. The uncaging laser’s wavelength was set to 720 nm. The hippocampal slice was bathed with 5 mM MNI-glutamate (Tocris Bioscience) and the perfusion was stopped for up to 30 min. Stability of resting membrane potential, morphology and resting Ca2+ concentration (baseline fluorescence) were used to rule out damage to the cell potentially caused by stopping the perfusion. The pointing function of the second scan head was used to direct the uncaging laser to the target locations through the 'Triggersync' control software (Bruker). The software also controlled application of a brief laser pulse to uncage the MNI-glutamate (0.65 ms, Pockels cell modulation, intensity of ~35–45 mW at the surface of the specimen).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!