The largest database of trusted experimental protocols

3 protocols using anti mouse igg horseradish peroxidase

1

Protein Extraction and Western Blot Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Total protein extraction from EDL and pgWAT was performed as previously described (Milkiewicz et al., 2011 (link)). The following polyclonal primary antibodies were used: Ser473-pAkt, Akt, Ser563-pHSL, HSL and α/β-tubulin (Cell Signaling Technology, #4058, #9272, #4139, #4107 and #2148, respectively) and β-actin (sc-47778, Santa Cruz Biotechnology). Secondary antibodies were goat anti-rabbit or anti-mouse IgG-horseradish peroxidase (Jackson ImmunoResearch Laboratories, # 111-035-003, 115-035-003, respectively). Membranes were developed using enhanced chemiluminescence (SuperSignalTM Westpico, #34080, ThermoFisher Scientific) and densitometry analysis was performed with ImageJ Analysis Software (NIH).
+ Open protocol
+ Expand
2

Immunofluorescence and Western Blotting of EB1 and Tubulin

Check if the same lab product or an alternative is used in the 5 most similar protocols
Indirect immunofluorescence was performed as previously described [5 (link)] by using the anti-EB1 antibody and anti-mouse antibody Alexa 568 nm (Molecular Probes); and FITC-coupled anti-α-tubulin antibody (clone DM1A; Sigma-Aldrich). Cells were observed using a Leica DM-IRBE microscope, 100X magnification. All images were acquired using Metamoph software (Molecular Devices, Sunnyvale, CA) at identical acquisition settings, and were processed using Image J software. After cell lysis, 30 μg of total protein were loaded into a 12% SDS-PAGE gel. Anti-EB1 antibody, anti-α-tubulin and anti-mouse IgG-horseradish peroxidase (Jackson Immunoresearch) were used. Chemiluminescence detection kit (Millipore) was used for visualization of protein bands. Chemiluminescent signal was acquired on a G:BOX imaging system (Syngene, Cambridge, UK) and quantification was done with Image J software.
+ Open protocol
+ Expand
3

Quantitative Western Blot Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Proteins were extracted from cell cultures and lysed with Laemmli sample buffer containing 2% SDS, 52.5 mM Tris-HCl and protease inhibitors (Roche diagnostics). Equal amounts of protein from each treatment were loaded into 12% SDS-polyacrylamide gels. Anti- EB1 (clone KT51, Abcam), anti-EB2 (Abcam), anti-EB3 (EPR11421(B), Abcam), anti-α-tubulin (Sigma-Aldrich), anti-acetylated tubulin (6-11B-1, Merck millipore), anti-detyrosinated tubulin (Abcam), and anti-GFP (Abcam), anti-GAPDH (Clone, source), anti-acetylated histone H3 (Merck millipore) and anti-mouse IgG-horseradish peroxidase (Jackson Immunoresearch) were used. YL½ antibody (Merck Millipore) was used to detect both tyrosinated tubulin (~ 50 kDa) and tyrosinated EB1 (~ 30 kDa). U87 cells were transfected with GFP-EB1 and Detyrosinated-GFP-EB1 plasmids [19 (link)] using lipofectamineTM 2000 system (Invitrogen) and left to incubator for 24–48 h. Visualization of protein bands was performed with a chemiluminescence detection kit (Millipore) and the chemiluminescent signal was acquired with a G:BOX imaging system (Syngene). Quantification of western blot bands was performed with Image J software.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!