The largest database of trusted experimental protocols

4 protocols using pcmv myc

1

Maintenance and Genetic Manipulation of HEK293 Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
Human embryonic kidney (HEK) 293 cells were maintained in DMEM (Invitrogen). The media was supplemented with 10% FBS, 100 U/ml penicillin, 200 µg/ml streptomycin, and 0.25 µg/ml amphotericin B. Polyclonal antibodies against the epitope tags (Flag, HA, and Myc), Ubiquitin, BLIMP1, and β-actin were obtained from Santa Cruz Biotechnology, Inc. Anti-Hrd1 and anti-Tubulin were purchased from Sigma-Aldrich. Fluorescence-labeled antibodies, including CD11c, CD11b, CD4, CD8, CD45.1, CD45.2, MHC-I, MHC-II, CD80, and CD86, were used for flow cytometry analysis (eBioscience). Hrd1 and the Ubiquitin expression plasmids were obtained as reported previously (Gao et al., 2008 (link)). Flag-BLIPM1 expression plasmids were purchased from Addgene. The truncation mutants of both Hrd1 and BLIMP1 were generated by PCR and subcloned into pCMV-Flag (Sigma-Aldrich) or pCMV-Myc vectors (Invitrogen).
+ Open protocol
+ Expand
2

Cloning and Tagging Human m6A Regulators

Check if the same lab product or an alternative is used in the 5 most similar protocols
Human cells were cultured in standard cell culture Dulbecco's modified Eagle's medium at 37 °C in a humidified incubator with 5% CO2(v/v). The human METTL3 gene was cloned into pCMV-Myc (Invitrogen), S-protein/FLAG/SBP (streptavidin-binding protein) triple-tagged destination vector48 (link) or pGEX-5×-2 (GE healthcare). The human WTAP gene was cloned into p3XFLAG-CMV-14 (Sigma) or pProEX-HTb (Invitrogen). The human METTL14 gene was cloned into pcDNA3-HA (Invitrogen). The following antibodies were used: rabbit-anti-METTL3 (Abcam), mouse-anti-METTL3 (Abnova), mouse-anti-WTAP (Santa Cruz), rabbit-anti-METTL14 (Atlas), rabbit-anti-m6A (Synaptic Systems) and other antibodies included in Supplementary information, Data S1.
+ Open protocol
+ Expand
3

RNA Extraction, cDNA Synthesis, and Plasmid Cloning

Check if the same lab product or an alternative is used in the 5 most similar protocols
Total RNA extracted from HEK293T cells was used for cDNA synthesis by SuperScript® III Reverse Transcriptase (Invitrogen) with a random primer. The obtained cDNA was used as a template to amplify the U1 snRNP proteins and the 3′ end processing factors with Phanta Max Super-Fidelity DNA Polymerase (Vazyme). Target fragments were cloned into pCMV-MYC, pCMV-FLAG, pmCherry-C1, and pEGFP-C1 expression vectors (Invitrogen) with ClonExpress® Ultra One Step Cloning Kit (Vazyme). The mutant vector MYC-SNRNP70-Mut was constructed by Tsingke. All constructed expression plasmids were confirmed by Sanger sequencing (Tsingke).
+ Open protocol
+ Expand
4

Molecular Cloning of zbTRIM25 and zbRIG-I

Check if the same lab product or an alternative is used in the 5 most similar protocols
The ORF of zbTRIM25 (GenBank accession no. NM200175.1) was sub-cloned into pCMV-Flag or pCMV-Myc vectors (Invitrogen) to generate recombinant plasmid pCMV-Flag-zbTRIM25 or pCMV-Myc-zbTRIM25, respectively. Full-length zbRIG-I and zbRIG-I deletion mutant cDNAs encoding amino acids 1–187 (zbRIG-I-2CARD), 188–937 (zbRIG-I-Δ2CARD), 812–927 (zbRIG-I-RD), and 188–811 [zbRIG-I-Δ(2CARD+RD)] were inserted into the pEGFP-N3 vectors. Full-length zbRIG-I was inserted into the pET-32a(+) (Clontech) vector to generate recombinant plasmid pET-32a(+)-zbRIG-I. zbTRIM25 deletion mutant zbTRIM25-SPRY and zbTRIM25-ΔSPRY were generated using the pCMV-Flag-zbTRIM25 plasmid as a template. Primers used for amplifying these genes are listed in Table S1.
HA-K63Ub plasmid was purchased from Rebio (Shanghai, China).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!