The largest database of trusted experimental protocols

Agilent 6120 quadrupole msd mass spectrometer

Manufactured by Agilent Technologies
Sourced in United States

The Agilent 6120 Quadrupole MSD mass spectrometer is a laboratory instrument used for the identification and quantification of chemical compounds. It utilizes quadrupole mass analyzer technology to separate and detect ions based on their mass-to-charge ratio. The instrument provides accurate mass measurements and can be used for a variety of analytical applications.

Automatically generated - may contain errors

3 protocols using agilent 6120 quadrupole msd mass spectrometer

1

Analytical and Preparative HPLC Procedures

Check if the same lab product or an alternative is used in the 5 most similar protocols
Analytic HPLC was performed with one of three systems: a Waters Alliance 2695 separation module (Milford, MA) equipped with a Waters 2998 diode array detector and an analytical Apollo C-18 column (250 mm × 4.6 mm, 5 μm) or a Dionex Ultimate 3000 Focused separation module (Bannockburn, IL) equipped with a DAD-3000(RS) and MWD-3000(RS) diode array detector and an Acclaim 120 C-18 column (4.6 mm × 100 mm, 3 μm) or an Agilent 1200 Series Quaternary LC system and an Eclipse XDB-C18 column (150mm × 4.6 mm, 5 μm, 80Å) equipped with an Agilent 6120 Quadrupole MSD mass spectrometer (Agilent Technologies, Santa Clara, CA). Semi-preparative HPLC was performed with a Waters 600 controller and pump (Milford, MA) equipped with a 996 diode array detector, 717plus autosampler, and an Apollo C-18 column (250 mm × 10 mm, 5 μm) purchased from Grace (Deerfield, IL). LC-electrospray ionization (ESI)-mass spectroscopy (MS) was performed using an Agilent 6120 Quadrupole MSD mass spectrometer (Agilent Technologies, Santa Clara, CA) equipped with an Agilent 1200 Series Quaternary LC system and an Eclipse XDB-C18 column (150mm × 4.6 mm, 5 μm, 80Å). High resolution (HR)-MS was performed using a Bruker BioTOF II, and NMR data were collected using a Varian Unity Inova 400 MHz spectrometer (Varian, Inc., Palo Alto, CA).
+ Open protocol
+ Expand
2

Profiling Secondary Metabolites in Actinobacteria

Check if the same lab product or an alternative is used in the 5 most similar protocols
To visualize the number and concentration of secondary metabolites in the form of chromatographic peaks, HPLC-UV/vis analysis of actinobacteria crude extracts was accomplished using an Agilent 1260 Infinity HPLC system (Agilent Technologies, Santa Clara, CA, USA) equipped with a Luna (Phenomenex, CA, USA) 5 μm C18 (2) 100 Å, LC column (250 × 4.6 mm; solvent A: 0.1% trifluoroacetic acid (TFA)/water, solvent B: Acetonitrile, flow rate: 1.0 mL min˗1; 0–30 min, 95–0% A (linear gradient); 30–35 min 0% A; 35–36 min 0–95% A (linear gradient); 36–40 min 95% A. UV-vis inset of full wavelength scan (190–600 nm). The methanolic crude extracts were also analyzed by HPLC-MS via an Agilent 6120 Quadrupole MSD mass spectrometer (Agilent Technologies, Santa Clara, CA, USA) equipped with an Agilent 1200 Series quaternary LC system and an Eclipse XDB-CD18 column (5 μm, 150 × 4.6 mm; solvent A: 0.1% formic acid/water, solvent B: 0.1% formic acid/Acetonitrile); flow rate: 0.5 mL min− 1; 0–30 min, 5–100% B; 30–35 min, 100% B; 35–36 min, 100–5% B; 36–40 min, 5% B; Phenomenex NX-C18 column (250 × 4.6 mm, 5 μm); 254 nm. The molecular masses were obtained for both positive and negative ion mode.
+ Open protocol
+ Expand
3

TM Production and HPLC Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Production and HPLC analysis of TM were conducted according to the method described by Ma et al. (2014b) (link). Liquid chromatography-mass spectrometry (LC-MS) was performed on an Agilent 6120 Quadrupole MSD mass spectrometer (Agilent Technologies, United States) equipped with an Agilent 1290 Series Quaternary LC system and an Eclipse Plus C18 column (100 × 2.1 mm, 1.8 μm).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!